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Electrons in accretion disk make radiation s

Energetic electrons can produce radiation through various processes:

Synchrotron Inverse Compton

Low-energy

Low-energy photon

photons ;

Electrons are responsible for observed radiation profiles, yet the
production of energetic electrons is unresolved in global simulations



How can we make global S|mulat|ons more complete}j
E— : ; L Sy

Global fluid simulations of

collisionless accretion disk

radiation are potentially in
great error

Incorporate sub-grid
plasma physics

» Reconnection
» Shocks

NASA GSFC/ J. Schnittman



Reconnection can epfﬁ '
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» Rearrangement of magnetic field Iin,tes_
> Magnetic energy — particle kinetic energ



Reconnection can enewlie partlcles

Happens many places:
Chromosphere
Magnhetosphere

Black hole coronae

" NASA SDO



Parameters: physical and computational

beta (of the ions) Computational

dst ripe

n;kgT; thermal pressure

Bi

B2 /(8T)  magnetic pressure

dvst ripe

sigma (of the ions) Nstripe

5 2/ (4m) magnetic pressure (x2) My

MMM C? rest-mass energy density

temperature ratio

electron temperature
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Full relativistic definition of sigma includes enthalpy
— ; ; | i

sigma, including enthalpy

B2

~ 1 for a cold plasma ~ = 0,

For a high-beta (thermally ‘hot’) plasma, the contribution from
the thermal pressure is non-negligible

One more important definition: Alfven velocity

Alfvén velocity, which describes
the speed of magnetic waves




Characterization of heating i

A useful number we can extract from each
simulation is the following dimensionless ratio:

o kBTe,out_kBTe,in

MTe

This is the ratio of increase in temperature to
magnetic energy available for dissipation. It can
be thought of as the ‘efficiency’ of reconnection.



How much are electrons heated during reconnection?.

s, &
PIC simulations and observations of magnetic
reconnhection suggest that a constant fraction of
iInflowing magnetic energy is given to electrons
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This fraction Mre is remarkably independent of
plasma parameters in the inflowing region



A model for the heating mechanism exist§_%ﬁ

-. |

AT/T =0.034/3
8 v

(ATt + AT nfiow

The model (middle terms) agrees
with the empircal scaling (last term)

(9L0Z “|Ie 19 1)



The quasi-relativistic regime is relatively unexplored

o

Parameters

Bi

Ary;

0.0078125
0.0078125
0.0078125
0.03125
0.03125
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0.125
0.125
0.125

0.5

0.5

0.5

2.

2.
0.0078125
0.0078125
0.0078125
0.03125
0.03125
0.03125
0.125
0.125
0.125

0.5

0.5

0.5

0.000406687
0.000406767
0.000407051
0.00163203
0.00163334
0.00163818
0.00661497
0.00663803
0.00673223
0.0280133
0.0285164
0.0308345
0.155222
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0.394336
0.0012227
0.00122343
0.0012261
0.00493921
0.00495179
0.00500182
0.0205981
0.0208554
0.022019
0.102084
0.110952
0.163062

relativistic

Use PiC simulation.
Choose parameters
so that inflow/
outflow electrons
are moderately

d—p=q(E+XxB) SN
dt c

Interpolation of the
fields from the mesh to

Integration of equations of
motion, moving particles

F. 2 u, 2 x

the particle locations

Weighting
(E,B);>Fy

Integration of Field Equations
on the grid

(E.B) € J;

Interpolation of charge
and current source terms

Weighting
(x,u), 2 Jj;

E
T _4xj-cVxB
ot

0B
—==cVxE
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if they are at about the same position and share about the same velocity. Hence, we define f(x,v,t) as
the particle distribution function, which represents the number density of particles found near the point

(x,v) in phase space. Specifically, the number of particles located within intervals d°z about & and d°v

about v is given by
dN = f(z,v,t)d’zd>v . (2)

X = (x,v) is phase space coordinates and X = (v, a)

Dt  \ Ot 0X

R

Df/Dt = 0 is known as Liouuville’s theorem. It states that the distribution function f is constant along

particle trajectories in phase space (when V, -a = 0).



The Vlasov-Maxwell equations

iy

a:'vt

species

] = Z q/vf(a:,v,t)d%

species




Solving the Vlasov-Maxwell equations g

Two options:

unoccupied phase space (wasted cells)

* Discretize the Vlasov equation on a
grid in phase space:

1. computationally expensive to solve in
6+1 dimensions

2. how to determine the boundaries of
the grid in momentum space?

3. what if /<07?

e Sample the phase space --.".J.....--

density with particles, and follow T |
them as LAGRANGIAN tracers. plasma distribution function




les vs. real particles
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Particle-in-cell loop

Particle mover

Y

Fp -> Xp

Particle -> Grid
Xp -> Ng, Jg

Field Solver

Grid -> Particle
Eg,Bg->Fp

A

Ng, Jg -> Eg, Bg




Start with alternatlng B-field and trigger reconnection.
— ; 3 e

» B-field initialized in

Initial By Harris equilibrium
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m QOO of particles at
";;;;;_._ = beginning (green)

EEEEEEE » Remove the particle

pressure in center to
drive reconnection




Boundar

y conditions o

Outflow

»  Particles escape along x-dir.

>  Allows for study of long-
term evolution of system

kT, /mec
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» Modified version of outflow

boundary condition

» Includes additional controls

necessary for high-beta case
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The plasma reaches a quasi-steady state

e
» To extract a meaningful Q.20 F :
outflow temperature, S 015k .
° E — ‘.q -
temperature profile S oiob. L ﬂf’"\ﬂw ;
should be flat = {A W M w A o v
’ . ~2 | .
> Alfvén velocity should be 0‘051 !
saturated in current (.00 . . . . .
sheet O 500 1000 1500 2000 2500
z|c/wpe]
1.5 S -
1OE ,mewwg
Vz,e 0.55— =
-0.5F =
_10 W E
=Y N T S S S
o 200 1000 1500 2000 2500

zc/wpe]



How to identify where reconnection has happened?
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This is a low-beta plasma... o i

» The circular substructures are ‘magnetic islands’
> They form due to the tearing instability )
> Islands heat particles by ‘bouncing’ kae/meC

L l . . . l . . . l . . . l . . L L

m;/me = 25

B8; = 0.008

o; = 0.1

Te in/Ti in = 051 42
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..ahd thls Is a hlgh(er) -beta plasma

r"lul'l'.l-

il

- e e L g gl e = o 1% . :l.-

> Islands are absent; thermal pressure suppresses tearing mode
» Heuristically: the plasma is already ‘hot,’ so there is less
heating that can be done by reconnection kpde /me
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We carefully extract the temperature increase i

: Recorded in

For each cell, compute

T — <+: code as:
lab-frame stress tensor F > T
E Np particles E E



We carefully extract the temperature increase i

P For each cell, compute  Recordedin:
E Tlab — <+—: code as:
: 5 lab-frame stress tensor

E ............. Ei p,upz/g
Y Z £ -

. E p particles .
.........................




We carefully extract the temperature increase i

P For each cell, compute  Recordedin:
E Tlab — <+—: code as:
: 5 lab-frame stress tensor

E ............. Ei p,upz/g
Y Z £ -

. E p particles .
.........................

2
eo = PC” + Uint

?60000
« | 0 p 0 O

0 0 —> Assume perfect fluid 4— A :
; : (Y(T) = Dttins = nT

ETSJBWRF_
0 0 0 po

Diagonal?
: Isotropic?



We carefully extract the temperature increase iz

b For each cell, compute : Recorded in:
F Liab <«: code as:
: : lab-frame stress tensor

E ............. Ei p/,LpI/E
Y Z £ -

. E p particles .
.........................

2
eo = PC” + Uint

f) eo 0 0 O :
'(8 T 8);—» Assume perfect fluid <

F(A(T) = D)ttint = nT
....................... $

: Diagonal? : Iterate E.o.S. and
: c? - . o o
; Isotropic? adiabatic index eq.

t Toninr =
0 0 0 po

—»_  Temperature



Electron gross heating

e

> For low-beta, the fraction of magnetic energy that
ends up as electron heating is around 3%
» Dependence on initial temperature ratio

Te,in/Tz’,z’n




lon gross heating

e

» Free magnetic energy that ends up as ion heating: ~10-12%
» This gives us a rough value for electron:ion heating as 1/3 in
the low-beta cases

Te,in/Tz’,z’n




Compressive vs. hon-compressive heating g
— ; B : o

> We use the following equation of state to account
for the fact that electrons’ adiabatic index can
vary from beginning to end of reconnection:

Equation of state for variable adiabatic index

» This allows us to remove the compressive
compohnent of the heating, which is not a result
of heating due to the reconnection electric field



Electrons: heating analysis
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Compressive heating

E




A simple model for the electron heating g

eF,...Ln ‘e (U—’”’
MTe,ideal ™ 32/87'(' ~

~/

> The expression is roughly the work
done by reconnection E field
compare to inflow magnetic energy

» Treat B, L, and vi, as functions of beta,
To/Ti - don’t just assume constant
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Heating should not depend on honphysical parameters
P ; 3 | &

» Check for convergence by varying computational parameters

» To trust the numerical results, need to make sure numerical
heating is relatively small

> Particles per cell, domain size, boundary conditions, etc.

ppc = 64 (yellow), ppc = 256 (red) my = 4096 (green), 8192 (yellow), 16384




Electron heating will decrease with higher mi/m.
PR, : ;. . e

» |n our simulations, we use an artificial mass ratio of mi/me= 25
> Why? This makes the problem computationally tractable

» We can expect our measured heating will decrease with
higher mass ratio;

MTe -~ (mi/me)—().lS

(Drake et al., 2014)

» Note: this scaling is consistent with the analytical model of
Egedal et al.



Connection to black-hole physics i

» Two main aspects to our investigation
» Plasma physics
> Explore a relatively unstudied region of plasma
parameter space
» Astrophysics
> Provide (eventually) a lookup table for global simulations
of black-hole accretion flows
> Even if it turns out that the dependence on input values is
weak, at least this will be known from a first-principles

investigation



Summary and future directions

e

Summary:

» Reconnection provides less nhet heating for high-beta
compared to low-beta; Te out/ Teinapproaches 1 for high beta

» Low-beta: ~3% of the magnetic energy ends up as electron
heating, and ~10-12% ands up as ion heating

For the future:

Explore guide field reconnection

Push to higher beta

Vary the mass ratio

Run with wider range of sigma

Use particle orbits to study heating mechanism
> |Is this the same as in the non-relativistic case?
» 3D simulations

Yy ¥V vV VvV Vv

Thank you for your attention



Strange-looking point from plot of L(beta)

T_/T,=1.0, B,=0.5000

I T

I
I
I
I
I
I
I
I
I
|
I
I
|

| |

1500 2000




3 /9
What is our equation of state if the adiabatic index is not constant? const = p?ﬁ (56 + Z(—)2 + 1)

d
is = 4o—aH-vip.o="
© p

_dH dp
=>dS'—@ VO_@ pdp

dS:Cé)Th—dlogp

Now integrate, using equation for h(©):

5 9
h=20+44/-02+1
0 +1/ 702+
1 (5 (9., \ %9

> log © + §sinh—1 (3

S:§ 5 5@) — logp

5 3 3 3 \?
—ilog@—kilog §@+\/(2@) +1)] —logp

= = (log © +log (h — ©)) + log (%)

3 (@5/3

— 5log 273 (h — @))

This provides the correct limiting values. For © — 0,

const = P
o p5/3

and for © > 1 < p > p,

const ~ p53 30

2
T 4
= const —m

7 4
= const’ = m

The adiabatic index is not the same in the upstream as compared to out-
flow region. To make a meaningful comparison of the compressive heating, we
should compute const upstream, then use the variable equation of state (boxed
above) to compute the predicted value const for given ©,p,p in the outflow.
Discrepancy between the predicted and actual values should then be accounted
for by ‘actual’ heating.

The equation we used for specific enthalpy comes from Taub inequality,
taking the equals sign:

(h—©)(h—40) >0
= h? —h50 +46%2-1>0

5 9
=>h=_-+414/-02+1
2+ 4 T




Sgr A* radiation spectrum

Synchrotron model
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IC model
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Figure 30(Color) Spectral energy distribution of Sgr A*. All numbers are given for a distance of 8.3kpc of the
Galactic Center and are dereddened for interstellar absorption (infrared and x rays) and scattering (x rays). Left:
steady state. The Sgr A* radio spectrum follows roughly a power law vLv~v4/3. The observed peak flux at
submillimeter wavelengths is about 5x1035erg’. The spectrum then steeply drops toward infrared wavelengths
down to less than the detection limit of about 2x1034erg/s at 2um. The only other unambiguous detection of Sgr
A* in its steady state is at x rays with energies from 2—-10keV with a flux of about 2x1033erg’. The figure shows a
compilation of data (with increasing frequency) from B (560), ¢ (150), A (565), x (487), - (105), + (186), x (475), @
(243), and — (34). Overplotted is a model of the quiescent emission [adapted from 541]: the radio spectrum is well
described by synchrotron emission of thermal electrons (short-dashed line). The flattening of the radio spectrum
at low frequency is modeled by the additional emission from a nonthermal power-law distribution of electrons,
which carry about 1.5% of the total thermal energy (dash-dotted line). The quiescent x-ray emission arises from
thermal bremsstrahlung from the outer parts of the accretion flow (dotted line). The secondary maximum (long-
dashed line) at frequencies of about 1016Hz is the result of the inverse Compton upscattering of the synchrotron
spectrum by the thermal electrons. Right: SED during a simultaneous x ray and infrared flare: while the total




1. Solve for the fields

- = 5

* |In electromagnetic PIC codes, only

two equations need to be solved. 0",B =-VxE ]

JE=VxB-J.

* The other two are satisfied as initial
conditions, and they continue to be V-E = P,
satisfied for appropriate choices of V:-B=0.

the numerical scheme.

STAGGERING in time (leapfrog):  [EZHSEEE Sl ipa VI AV S EER UV Ay
* second-order accurate in time Bt — B" — AtV x E"TY/2

E o % . x
n-1 n__

B,J peat V

® >
n+1/2

STAGGERING in space (Yee's mesh):

» electric fields on cell edges, magnetic
fields on cell faces

e second-order accurate in space
» maintains divergence-free B




2. Interpolate fields to particle positions g

* The fields obtained from Maxwell’s
equations are determined only at the

grid points, they need to be
interpolated to the particle positions.

* The interpolation is done by
assuming a particle shape function.

* The shape function needs to be:
1. isotropic
2. zero outside some range

3. higher order B-splines are
computationally more expensive,
but more accurate and less
“collisional”




3. Push the particles o

If the number of ppc is >>1, most of the computing time is spent in pushing the particles.

The BORIS pusher (leapfrog method)




4. Deposit current on the grid

* Charge conservation is IB=-VxE=0V-B=0
required to satisfy ' ’ )
Poisson’s equation. E=VxB-J=JV - E=-V-J——=0d,p

* The current deposition scheme needs to be charge-conserving.

* Or, a divergence-cleaning solver should be employed.




Numerical stability

* The particle granularity gives short-scale fluctuations of the
electromagnetic fields, whose mean amplitude scales (Poisson-
like) as \Vn, where n is the particle density.

* The fractional contribution of the fluctuations (over the slowly
varying fields) scales as 1/\n.

* This is problematic because the number of super-particles in
particle-in-cell codes is « number of real particles.

* We need to control the level of the fluctuations such that they
give negligible effects over the timespan of the simulations.



lon heating | ra

For completeness, here are the corresponding ion plots:
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Electron heating | e

The particle heating can be characterized in different ways:

0.010 0.100 0.001 0.010 0.100 1.000 10.000
ﬁi ﬁi

o=0.1
m;/me = 25
ppc = 16; 64
m,, = 10240
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Electron vs. lon heating

1.000 10.000

1.000 10.000




