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GPU-accelerated machines entered the

TOP500 rankings just over a decade ago.
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GPU-accelerated machines entered the
TOP500 rankings just over a decade ago.

v. 2008 v. 2020
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How do we get optimal performance from
these supercomputers?

« Compilers
e Algorithms/data structures
» Load balancing
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Particle-mesh codes parallelize via domain
decomposition.
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Particle-mesh simulations can suffer from
load imbalance.
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Load imbalance can be corrected at run
time.

Basic load balance algorithm for distributed memory particle-mesh:

1 if (step % loadBalancelInterval == 0) {

2 float currEff = 0.0, propEff = 0.0;

3 DistMapping newDM = makeNewDM(costs,

4 currEff, propEff);
5 bool globUpdateDM = false;

6 if (myRank == root) {

7 globUpdateDM = (propEff > 1l.l*currEff);
8 }

<) bcast (&globUpdateDM, 1, root);
10 if (globUpdateDM) {
11 bcast (&newDM[0], newDM.size(), root);
12 updateDistributionMapping(newDM) ;
13 }

14 }




How should costs be measured when
running on a GPU-accelerated machine?

1. Start timer
2. Launch kernel
3. Stop timer
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How should costs be measured when
running on a GPU-accelerated machine?

Elapsed time

Start timing Stop timing

Time

Not like this! CPU and GPU are asynchronous.
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compute work
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These are a few strategies appropriate for
cost assessment on GPU machines:

e Heuristic: number of particles and cells as proxy for
compute work

» CUPTI: use CUDA Profiling Tools Interface to access
kernel times

e GPU clock: use thread-summed kernel times as relative
measure of compute work




How to measure costs with heuristic?

Cost forrank i is linear combination of number of particles and cells:

Ci = Q * Nparticles T P - Aeelis

« a and f are parameters representing relative

computational cost of single particle vs. single cell
» 2 and f change depending on algorithm, hardware
e In general, a and f should be measured
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How to measure costs with heuristic?

Cost forrank i is linear combination of number of particles and cells:

Ci = Q * Nparticles T P - Aeelis

« a and f are parameters representing relative
computational cost of single particle vs. single cell

» 2 and f change depending on algorithm, hardware

e In general, a and f should be measured

» Pros: vendor agnostic, low overhead

. . cumbersome tuning of parameters




How to measure costs with CUPTI?

CUDA Profiling Tools Interface (CUPTI): docs.nvidia.com/cuda/cupti
GPU activity triggers callback functions to return CUPTI buffers
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CUDA Profiling Tools Interface (CUPTI): docs.nvidia.com/cuda/cupti
GPU activity triggers callback functions to return CUPTI buffers

Register ~ Launch Callback: Callback: Callback: S5t +=Ah

" callbacks  kernels store At; store At, ~ store Atz t? i Qtz -

Stream 1
Stream 2

Stream 3

» Pros: APl enables powerful profiling capabilities
. . overhead, vendor specific




How to measure costs with CUPTI?

Initialize the trace:

1 cuptiActivityEnable(CUPTI ACTIVITY KIND CONCURRENT KERNEL) ;
2 cuptiActivityRegisterCallbacks (bfrRequest, bfrCompleted);

Trigger callback functions:

// Return a buffer of completed activity records
// to CUPTI client

1 void CUPTI API bfrRequest (uint8 t **bfr, ...)

2 {

3 // Signal to CUPTI client that an empty buffer
4 // is needed by CUPTI

5 }

6 void CUPTI API bfrCompleted (uint8 t *bfr, ...)

7 A

8

9

0

1




How to measure costs with CUPTI?

Initialize the trace:

1 cuptiActivityEnable(CUPTI ACTIVITY KIND CONCURRENT KERNEL);
2 cuptiActivityRegisterCallbacks(bfrRequest, bfrCompleted);

Trigger callback functions:

1
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void CUPTI API bfrRequest (uint8 t **bfr, ...)
{...}

void CUPTI API bfrCompleted (uint8 t *bfr, ...)
{...}

mykernel<<<...>>>(...);
cuptiActivityFlushAll(0); // Wait for return of CUPTI
— bfrCompleted(...); // records via callback function




How to measure costs with GPU clock?

Estimate relative compute work from thread-summed kernel time

Stream 2

Stream 3



How to measure costs with GPU clock?

Estimate relative compute work from thread-summed kernel time

____ Launch
kernels
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» Pros: vendor agnostic, no hyperparameter tuning




How to measure costs with GPU clock?

Estimate relative compute work from thread-summed kernel time

Stream 2

Stream 3

» Pros: vendor agnostic, no hyperparameter tuning
e : requires some data movement




How to measure costs with GPU clock?

Add the thread cycles, using atomicAdd for thread safety:

__global  void mykernel (...) {
float cycles = clock();

// thread work
cycles = clock() - cycles;

// cost ptr is the pointer to rank's cost
atomicAdd(cost ptr, cycles);
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}

« Reduced overhead using pinned host memory
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How to measure costs with GPU clock?

Add the thread cycles, using atomicAdd for thread safety:

__global  void mykernel (...) {
float cycles = clock();

// thread work
cycles = clock() - cycles;

// cost ptr is the pointer to rank's cost
atomicAdd(cost ptr, cycles);
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=

}

« Reduced overhead using pinned host memory

» To use this: instrument most expensive kernels

» Overcomes weakness of heuristic: that has no
sensitivity to how much particles move
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We studied these strategies in the particle-
in-cell code WarpX.

WarpX: advanced PIC code

« github.com/ECP-WarpX/WarpX

AMReX: mesh framework

» github.com/AMReX-Codes/amrex

Courtesy of Max Thevenet




We choose laser-ion acceleration as a
challenging test problem.

Rapid changes in particle, field spatial profiles — challenge problem

Numerical experiments: 6-6144 Nvidia V100 GPUs on OLCF Summit
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The inhomogeneity translates to different
computational costs.
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Computational costs are used to compute
optimal mapping from MPI rank to domain.

Knapsack: distribute costs to ranks as equally as possible
Space-filling curve (SFC): enumerate ranks along curve and partition

Knapsack Z-order space filling curve




Dynamic load balancing is crucial to
performance.

Static load balancing
is not enough!
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With optimal selection of parameters, we
achieve around 3x-4x speedup.

Optimal performance with:

« GPU clock cost collection

« Knapsack algorithm

9 boxes per GPU

« 10 steps to check rebalance
« 10% improvement threshold
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With optimal selection of parameters, we
achieve around 3x-4x speedup.

Optimal performance with:

« GPU clock cost collection

« Knapsack algorithm

9 boxes per GPU

« 10 steps to check rebalance
« 10% improvement threshold

3.8x speedup over no |b




How much improvement expected from
load balancing?

Performance model w/
strong-scaling as input:
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The load balancing scheme achieves 62%-
74% of theoretical maximum.

Limit from strong scaling

Speedup with load balance

Number of nodes




The load balancing scheme achieves 62%-
74% of theoretical maximum.

Limit from strong scaling

)
O
c
Q
©
e
i
®
o
L
=
=
Q
-
O
0
0]
Q
w

Number of nodes

Avoid out-of-memory on GPUs with load balancing!
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computational costs of sub-domains of computational work
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What is new/innovative about this work?

« Introduced GPU-applicable strategies for measuring relative
computational costs of sub-domains of computational work

« Implemented potentially vendor-neutral, in-situ, in-kernel cost
measurement strategy based on GPU clock

« Implemented Nvidia CUPTI cost measurement — overhead

« Demonstrated effective GPU dynamic load balancing running
challenging use case WarpX at scale (6-6144 GPUs) on Summit

e Introduced strong-scaling based performance model




With new strategies for GPU cost
assessment, we achieved 3x-4x speedup on
challenging plasma physics problem.

Work is open source:

» WarpX: github.com/ECP-WarpX/WarpX

» AMReX: github.com/AMReX-Codes/amrex
Code, environment, tests all available at:

e https://zenodo.org/record/4708449#YIEmmJNKhRO
See preprint here:

e https://arxiv.org/abs/2104.11385
Personal github:

e https://github.com/mrowan137
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Thank you! | am happy to answer any questions.




Performance is tuned with additional
algorithm-specific parameters.

: cost collection method
: algorithm to update distribution mapping
: controls size of domain decomposition
: how often to try rebalancing
: required improvement to rebalance
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