In-situ Assessment of Device-side
Compute Work for Dynamic Load
Balancing in a GPU-accelerated PIC Code

Michael Rowan
Work with Kevin Gott, Axel Huebl, Jack Deslippe
See preprint here: https://arxiv.org/abs/2104.11385
PASC '21 — 07.05.2021

Outline:

1. Load balancing intro
2. Dynamic load balancing in
PIC code run on GPUs

GPU-accelerated machines entered the

TOP500 rankings just over a decade ago.

System

United States

United States

United States

United Sta

United States

United States

Oracle

United States

United States

United States

ed Sto

United States

v. 2008

Rmax Rpeak
Cores (TFlop/s) (TFlop/s)

129,600 1,105.0

51,200

Cray/HPE 66,000

163,840

Cray/HPE

Cray/HPE

Cray/HPE

Rmax Rpeak
System (TFlop/s) (TFlop/s)

100 537,212.0

VIDIA / Mellanox

63,460.0 79.215.0

Nvidia

4,981,760

70,980.0

Dell EMC

United St

Saudi Arabia

Power
(kw)

29,899

GPU-accelerated machines entered the
TOP500 rankings just over a decade ago.

v. 2008 v. 2020

Rmax Rpeak Power Rmax Rpeak Power
System Cores (TFlop/s) (TFlop/s) (kW) Rank System (TFlop/s) (TFlop/s) (kW)

. 29,899
129,600 1,105.0 4 7 483

United States

Cray/HPE

United States

51,200

United States

United States

Cray/HPE 66,000

United States
163,840

00,678
United States

Oracle
70,980.
United States

United States

Cray/HPE 30,976

United States

United States

How do we get optimal performance from
these supercomputers?

« Compilers
e Algorithms/data structures
» Load balancing

How do we get optimal performance from
these supercomputers?

« Compilers
e Algorithms/data structures
 Load balancing

Particle-mesh codes parallelize via domain
decomposition.

Particle-mesh codes parallelize via domain
decomposition.

Particle-mesh codes parallelize via domain
decomposition.

Particle-mesh codes parallelize via domain
decomposition.

Particle-mesh codes parallelize via domain
decomposition.

Particle-mesh simulations can suffer from
load imbalance.

Particle-mesh simulations can suffer from
load imbalance.

Load imbalance can be corrected at run
time.

Basic load balance algorithm for distributed memory particle-mesh:

1 if (step % loadBalancelInterval == 0) {

2 float currEff = 0.0, propEff = 0.0;

3 DistMapping newDM = makeNewDM(costs,

4 currEff, propEff);
5 bool globUpdateDM = false;

6 if (myRank == root) {

7 globUpdateDM = (propEff > 1l.l*currEff);
8 }

<) bcast (&globUpdateDM, 1, root);
10 if (globUpdateDM) {
11 bcast (&newDM[0], newDM.size(), root);
12 updateDistributionMapping(newDM) ;
13 }

14 }

How should costs be measured when
running on a GPU-accelerated machine?

1. Start timer
2. Launch kernel
3. Stop timer

How should costs be measured when
running on a GPU-accelerated machine?

Elapsed time

Start timing Stop timing

Time

How should costs be measured when
running on a GPU-accelerated machine?

Elapsed time

Start timing Stop timing

Time

Not like this! CPU and GPU are asynchronous.

These are a few strategies appropriate for
cost assessment on GPU machines:

e Heuristic: number of particles and cells as proxy for
compute work

These are a few strategies appropriate for
cost assessment on GPU machines:

e Heuristic: number of particles and cells as proxy for
compute work

» CUPTI: use CUDA Profiling Tools Interface to access
kernel times

These are a few strategies appropriate for
cost assessment on GPU machines:

e Heuristic: number of particles and cells as proxy for
compute work

» CUPTI: use CUDA Profiling Tools Interface to access
kernel times

e GPU clock: use thread-summed kernel times as relative
measure of compute work

How to measure costs with heuristic?

Cost forrank i is linear combination of number of particles and cells:

Ci = Q * Nparticles T P - Aeelis

« a and f are parameters representing relative

computational cost of single particle vs. single cell
» 2 and f change depending on algorithm, hardware
e In general, a and f should be measured

How to measure costs with heuristic?

Cost forrank i is linear combination of number of particles and cells:

Ci = & * Nparticles T P - Rcells

« a and f are parameters representing relative
computational cost of single particle vs. single cell

» 2 and f change depending on algorithm, hardware

e In general, @ and f should be measured

» Pros: vendor agnostic, low overhead

How to measure costs with heuristic?

Cost forrank i is linear combination of number of particles and cells:

Ci = Q * Nparticles T P - Aeelis

« a and f are parameters representing relative
computational cost of single particle vs. single cell

» 2 and f change depending on algorithm, hardware

e In general, a and f should be measured

» Pros: vendor agnostic, low overhead

. . cumbersome tuning of parameters

How to measure costs with CUPTI?

CUDA Profiling Tools Interface (CUPTI): docs.nvidia.com/cuda/cupti
GPU activity triggers callback functions to return CUPTI buffers

Register ~ Launch Callback: Callback: Callback: S5t +=Ah

" callbacks kernels store At; store At, ~ store Atz t? i Qtz -

Stream 1
Stream 2

Stream 3

How to measure costs with CUPTI?

CUDA Profiling Tools Interface (CUPTI): docs.nvidia.com/cuda/cupti
GPU activity triggers callback functions to return CUPTI buffers

Register ~ Launch Callback: Callback: Callback: S5t +=Ah

" callbacks kernels store At; store At, ~ store Atz t? i Qtz -

Stream 1
Stream 2

Stream 3

» Pros: APl enables powerful profiling capabilities

How to measure costs with CUPTI?

CUDA Profiling Tools Interface (CUPTI): docs.nvidia.com/cuda/cupti
GPU activity triggers callback functions to return CUPTI buffers

Register ~ Launch Callback: Callback: Callback: S5t +=Ah

" callbacks kernels store At; store At, ~ store Atz t? i Qtz -

Stream 1
Stream 2

Stream 3

» Pros: APl enables powerful profiling capabilities
. . overhead, vendor specific

How to measure costs with CUPTI?

Initialize the trace:

1 cuptiActivityEnable(CUPTI ACTIVITY KIND CONCURRENT KERNEL) ;
2 cuptiActivityRegisterCallbacks (bfrRequest, bfrCompleted);

Trigger callback functions:

// Return a buffer of completed activity records
// to CUPTI client

1 void CUPTI API bfrRequest (uint8 t **bfr, ...)

2 {

3 // Signal to CUPTI client that an empty buffer
4 // is needed by CUPTI

5 }

6 void CUPTI API bfrCompleted (uint8 t *bfr, ...)

7 A

8

9

0

1

How to measure costs with CUPTI?

Initialize the trace:

1 cuptiActivityEnable(CUPTI ACTIVITY KIND CONCURRENT KERNEL);
2 cuptiActivityRegisterCallbacks(bfrRequest, bfrCompleted);

Trigger callback functions:

1

O WO Jo Ul WDN K

void CUPTI API bfrRequest (uint8 t **bfr, ...)
{...}

void CUPTI API bfrCompleted (uint8 t *bfr, ...)
{...}

mykernel<<<...>>>(...);
cuptiActivityFlushAll(0); // Wait for return of CUPTI
— bfrCompleted(...); // records via callback function

How to measure costs with GPU clock?

Estimate relative compute work from thread-summed kernel time

Stream 2

Stream 3

How to measure costs with GPU clock?

Estimate relative compute work from thread-summed kernel time

____ Launch
kernels

\;;;;

Stream 1---- m

Stream 2

Stream 3 clock() Wori< -

EALSE
— Atz

» Pros: vendor agnostic, no hyperparameter tuning

How to measure costs with GPU clock?

Estimate relative compute work from thread-summed kernel time

Stream 2

Stream 3

» Pros: vendor agnostic, no hyperparameter tuning
e : requires some data movement

How to measure costs with GPU clock?

Add the thread cycles, using atomicAdd for thread safety:

__global void mykernel (...) {
float cycles = clock();

// thread work
cycles = clock() - cycles;

// cost ptr is the pointer to rank's cost
atomicAdd(cost ptr, cycles);

O WO JOoULdWDN B

=

}

« Reduced overhead using pinned host memory

How to measure costs with GPU clock?

Add the thread cycles, using atomicAdd for thread safety:

__global void mykernel (...) {
float cycles = clock();

// thread work
cycles = clock() - cycles;

// cost ptr is the pointer to rank's cost
atomicAdd(cost ptr, cycles);

O WO JOoULdWDN B

=

}

« Reduced overhead using pinned host memory
» To use this: instrument most expensive kernels

How to measure costs with GPU clock?

Add the thread cycles, using atomicAdd for thread safety:

__global void mykernel (...) {
float cycles = clock();

// thread work
cycles = clock() - cycles;

// cost ptr is the pointer to rank's cost
atomicAdd(cost ptr, cycles);

O W oo JOoUl WD

=

}

« Reduced overhead using pinned host memory

» To use this: instrument most expensive kernels

» Overcomes weakness of heuristic: that has no
sensitivity to how much particles move

Outline:

1. Load balancing intro
2. Dynamic load balancing in
PIC code run on GPUs

We studied these strategies in the particle-
in-cell code WarpX.

WarpX: advanced PIC code

« github.com/ECP-WarpX/WarpX

AMReX: mesh framework

» github.com/AMReX-Codes/amrex

Courtesy of Max Thevenet

We choose laser-ion acceleration as a
challenging test problem.

Rapid changes in particle, field spatial profiles — challenge problem

Numerical experiments: 6-6144 Nvidia V100 GPUs on OLCF Summit

Particles
per cell

505 505 5005 -50 5
Z[um] Z[pm] Z[um] Z[um]

NV

The inhomogeneity translates to different
computational costs.

(a)ft=51"s (b) [t=1031s

Particles
per cell

(heuristic)

(GPU clock)

Cost
(CUPTI)

-5 0 5 -5 5 -5 ‘ 5 |
z[um] Z[m] z[um] z[m]

Computational costs are used to compute
optimal mapping from MPI rank to domain.

Knapsack: distribute costs to ranks as equally as possible
Space-filling curve (SFC): enumerate ranks along curve and partition

Knapsack Z-order space filling curve

Dynamic load balancing is crucial to
performance.

Static load balancing
is not enough!

LN
o

o
o

Efficiency: average
cost/mean cost

O
(o)

o
~

>
O
C
Q0
3]
=
(O]
(O]
O
C
®©
®
o]
©
®
o
-

O
N

O
o

0 2000 4000 6000 8000 10000 12000
Step

With optimal selection of parameters, we
achieve around 3x-4x speedup.

Optimal performance with:

« GPU clock cost collection

« Knapsack algorithm

9 boxes per GPU

« 10 steps to check rebalance
« 10% improvement threshold

With optimal selection of parameters, we
achieve around 3x-4x speedup.

Optimal performance with:

« GPU clock cost collection

« Knapsack algorithm

9 boxes per GPU

« 10 steps to check rebalance
« 10% improvement threshold

With optimal selection of parameters, we
achieve around 3x-4x speedup.

Optimal performance with:

« GPU clock cost collection

« Knapsack algorithm

9 boxes per GPU

« 10 steps to check rebalance
« 10% improvement threshold

3.8x speedup over no |b

How much improvement expected from
load balancing?

Performance model w/
strong-scaling as input:

0
o
E
=
©
=

Estimate speedup S as
« initial load imbalance

Number of nodes

NV

The load balancing scheme achieves 62%-
74% of theoretical maximum.

Limit from strong scaling

Speedup with load balance

Number of nodes

The load balancing scheme achieves 62%-
74% of theoretical maximum.

Limit from strong scaling

)
O
c
Q
©
e
i
®
o
L
=
=
Q
-
O
0
0]
Q
w

Number of nodes

Avoid out-of-memory on GPUs with load balancing!

What is new/innovative about this work?

« Introduced GPU-applicable strategies for measuring relative
computational costs of sub-domains of computational work

What is new/innovative about this work?

« Introduced GPU-applicable strategies for measuring relative
computational costs of sub-domains of computational work

« Implemented potentially vendor-neutral, in-situ, in-kernel cost
measurement strategy based on GPU clock

What is new/innovative about this work?

« Introduced GPU-applicable strategies for measuring relative
computational costs of sub-domains of computational work

« Implemented potentially vendor-neutral, in-situ, in-kernel cost
measurement strategy based on GPU clock

« Implemented Nvidia CUPTI cost measurement — overhead

What is new/innovative about this work?

« Introduced GPU-applicable strategies for measuring relative
computational costs of sub-domains of computational work

« Implemented potentially vendor-neutral, in-situ, in-kernel cost
measurement strategy based on GPU clock

« Implemented Nvidia CUPTI cost measurement — overhead

« Demonstrated effective GPU dynamic load balancing running
challenging use case WarpX at scale (6-6144 GPUs) on Summit

What is new/innovative about this work?

« Introduced GPU-applicable strategies for measuring relative
computational costs of sub-domains of computational work

« Implemented potentially vendor-neutral, in-situ, in-kernel cost
measurement strategy based on GPU clock

« Implemented Nvidia CUPTI cost measurement — overhead

« Demonstrated effective GPU dynamic load balancing running
challenging use case WarpX at scale (6-6144 GPUs) on Summit

e Introduced strong-scaling based performance model

With new strategies for GPU cost
assessment, we achieved 3x-4x speedup on
challenging plasma physics problem.

Work is open source:

» WarpX: github.com/ECP-WarpX/WarpX

» AMReX: github.com/AMReX-Codes/amrex
Code, environment, tests all available at:

e https://zenodo.org/record/4708449#YIEmmJNKhRO
See preprint here:

e https://arxiv.org/abs/2104.11385
Personal github:

e https://github.com/mrowan137

WarpX team*: physicists + applied mathematicians + co'/rf)pufe’i; S&Qe/nﬁst‘éi >

v

/ , } 4 :o o //
N 7 7 " /

i "\\ .. . Jean-luc Diana Axel Rémi Olga Yinjian Edoardo gl

foo, ™ Va % Amorim Huebl Lehe Shapoval Zhao F Zlon 2

. \‘ |__) y (P ‘, p : ’

\ -

-~ \ ACCELERATOR TECHNOLOGV&
v) » < APPLIED PHYSICS DIVISION —— ™
. A Y~ fﬁ“
III s p
rreeeer Ann ~ John Kevin Revathi Andrew Michael , Eloise .~ Weigqun o
- Almgren (coPl) Bell Gott Jambunathan Myers Rowan Yang . Zhang

" BERKELEY LAB

g Sr.\/ %' ’\.

(NESAP)

w‘;

David
Grote (coPI
e . - Henri Luca Antonin Neil
| !!! +gro st of international collaborators Vincenti Fedeli Sainte-Marie Zaim

|§

Marc Lixin
Hogan (coPl) Ge

1A~ Ty
i

PARIS-SACLAY

Maxence Severin
Thévenet Diederichs

#

Lorenzo
Giacomel

WarpX team*: physicists + applied mathematicians + co'/rf)pufe’i; SQe/nﬁst‘Si >
: / J ’ o

v

- il

.1‘ & ‘0 o p
7 g > ub z
=N ; N , g /
Lol TS\ ey deanduc Diana Rémi Olga Yinjian Edoardo)
foo, ™ Va % Amorim Lehe Shapoval Zhao F Zlon 2
. \\ |__) y (P | p , ’
— \ "
-~ \ ACCELERATOR TECHNOLOGV&
» < APPLIED PHYSICS DIVISION —— ™
A Y~ fﬁ“
||| ~ ; st
reeerrs Ann : Revathi Andrew Michael Eloise . ~Weiqun o
- Almgren (coPl) Bell Jambunathan Myers Rowan Yang . Zhang

" BERKELEY LAB

[

ol AR
S | NNy g \

David
Grote (coPl)

Marc

Hogan (coPl)

i

I!‘F‘

.ig

Lixin
Ge

&

- % wall ;
gl ENE LR P "‘ .
= - = t
(NESAP) -
A . Henri Luca Antonin Neil
+gro st of international collaborators incentit ™ radell. Salnte-Miada ~'7aim

w‘

|§

PARIS-SACLAY

Severin
Diederichs

Maxence
Thévenet

#

Lorenzo
Giacomel

Thank you! | am happy to answer any questions.

Performance is tuned with additional
algorithm-specific parameters.

: cost collection method
: algorithm to update distribution mapping
: controls size of domain decomposition
: how often to try rebalancing
: required improvement to rebalance

N
o
o
o

~
L
()
£
=
©
=

15038 9 2 1 3 10 30 100300 5 10 15
Boxes per GPU Load balance Improvement
interval (steps) threshold (%)

