In-situ Assessment of Device-side Compute Work for Dynamic Load Balancing in a GPU-accelerated PIC Code

Michael Rowan
Work with Kevin Gott, Axel Huebl, Jack Deslippe
See preprint here: https://arxiv.org/abs/2104.11385
PASC '21 — 07.05.2021

Outline:

- 1. Load balancing intro
- 2. Dynamic load balancing in PIC code run on GPUs

GPU-accelerated machines entered the TOP500 rankings just over a decade ago.

Nov. 2008

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband, IBM DOE/NNSA/LANL United States	129,600	1,105.0	1,456.7	2,483
2	Jaguar - Cray XT5 QC 2.3 GHz, Cray/HPE DOE/SC/Oak Ridge National Laboratory United States	150,152	1,059.0	1,381.4	6,950
3	Pleiades - SGI Altix ICE 8200EX, Xeon QC 3.0/2.66 GHz, HPE NASA/Ames Research Center/NAS United States	51,200	487.0	608.8	2,090
4	BlueGene/L - eServer Blue Gene Solution, IBM DOE/NNSA/LLNL United States	212,992	478.2	596.4	2,329
5	Kraken XT5 - Cray XT5 QC 2.3 GHz, Cray/HPE National Institute for Computational Sciences/University of Tennessee United States	66,000	463.3	607.2	
6	Intrepid - Blue Gene/P Solution, IBM DOE/SC/Argonne National Laboratory United States	163,840	450.3	557.1	1,260
7	Ranger - SunBlade x6420, Opteron QC 2.3 Ghz, Infiniband, Oracle Texas Advanced Computing Center/Univ. of Texas United States	62,976	433.2	579.4	2,000
8	Franklin - Cray XT4 QuadCore 2.3 GHz, Cray/HPE DDE/SC/LBNL/NERSC United States	38,642	266.3	355.5	1,150
9	Jaguar - Cray XT4 QuadCore 2.1 GHz, Cray/HPE DOE/SC/Oak Ridge National Laboratory United States	30,976	205.0	260.2	1,580
10	Red Storm - Sandia/ Cray Red Storm, XT3/4, 2.4/2.2 GHz dual/quad core, Cray/HPE NNSA/Sandia National Laboratories United States	38,208	204.2	284.0	2,506

Nov. 2020

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.26Hz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.070Hz, AVIDIA Volta GV100, Dual-rail Mellanox EDR Infiliband, IBM D0E/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.16Hz, NVIDIA Velta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOENNSA/LINL United States	1,572,480	94,640.0	125,712.0	7,438
4	Sunway TalhuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
5	Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520	63,460.0	79,215.0	2,646
6	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482
7	JUWELS Booster Module - Bull Sequana XH2000 , AMD EPYC 7402 24C 28BHz, XMDIM A100, Mellanox HDR InfiniBand/ParTec ParaStation ClusterSuite, Atos Forschungszentrum Juelich (FZJ) Germany	449,280	44,120.0	70,980.0	1,764
8	HPC5 - PowerEdge C4140, Xeon Gold 6252 24C 2.1GHz, NVIDIA Tesla V100, Mellanox HDR Infiniband, Dell EMC Eni S.p.A. Italy	669,760	35,450.0	51,720.8	2,252
9	Frontera - Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR, Dell EMC Texas Advanced Computing Center/Univ. of Texas United States	448,448	23,516.4	38,745.9	
10	Dammam-7 - Cray CS-Storm, Xeon Gold 6248 20C 2.5GHz, NVIDIA Tasla V100 SXM2, InfiniBand HDR 100, HPE Saudi Aramco Saudi Arabia	672,520	22,400.0	55,423.6	

GPU-accelerated machines entered the TOP500 rankings just over a decade ago.

Nov. 2008

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband, IBM DOE/NNSA/LANL United States	129,600	1,105.0	1,456.7	2,483
2	Jaguar - Cray XT5 QC 2.3 GHz, Cray/HPE DOE/SC/Oak Ridge National Laboratory United States	150,152	1,059.0	1,381.4	6,950
3	Pleiades - SGI Altix ICE 8200EX, Xeon QC 3.0/2.66 GHz, HPE NASA/Ames Research Center/NAS United States	51,200	487.0	608.8	2,090
4	BlueGene/L - eServer Blue Gene Solution, IBM DOE/NNSA/LLNL United States	212,992	478.2	596.4	2,329
5	Kraken XT5 - Cray XT5 QC 2.3 GHz, Cray/HPE National Institute for Computational Sciences/University of Tennessee United States	66,000	463.3	607.2	
6	Intrepid - Blue Gene/P Solution, IBM DOE/SC/Argonne National Laboratory United States	163,840	450.3	557.1	1,260
7	Ranger - SunBlade x6420, Opteron QC 2.3 Ghz, Infiniband, Oracle Texas Advanced Computing Center/Univ. of Texas United States	62,976	433.2	579.4	2,000
8	Franklin - Cray XT4 QuadCore 2.3 GHz, Cray/HPE DDE/SC/LBNL/NERSC United States	38,642	266.3	355.5	1,150
9	Jaguar - Cray XT4 QuadCore 2.1 GHz, Cray/HPE DOE/SC/Oak Ridge National Laboratory United States	30,976	205.0	260.2	1,580
10	Red Storm - Sandia/ Cray Red Storm, XT3/4, 2.4/2.2 GHz dual/quad core, Cray/HPE NNSA/Sandia National Laboratories United States	38,208	204.2	284.0	2,506

Nov. 2020

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.26Hz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.070Hz, AVIDIA Volta 6V100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.16Hz, NVIDIA Volta 6V100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LINL United States	1,572,480	94,640.0	125,712.0	7,438
4	Sunway TalhuLight - Sunway MPP, Sunway SW26010 260C 1.450Hz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
5	Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Metlanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520	63,460.0	79,215.0	2,646
6	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482
7	JUWELS Booster Module - Bull Sequana XH2000 , AMD EPYC 7402 24C 280Hz, XMIDIA A100, Mellanox HDR InfiniBand/ParTec ParaStation ClusterSuite, Atos Forschungszentrum Juelich (FZJ) Germany	449,280	44,120.0	70,980.0	1,764
8	HPC5 - PowerEdge C4140, Xeon Gold 6252 24C 2.1GHz, NVIDIA Tesla V100, Mellanox HDR Infiniband, Dell EMC Eni S.p.A. Italy	669,760	35,450.0	51,720.8	2,252
9	Frontera - Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR, Dell EMC Texas Advanced Computing Center/Univ. of Texas United States	448,448	23,516.4	38,745.9	
10	Dammam-7 - Cray CS-Storm, Xeon Gold 6248 20C 2.5GHz, NVIDIA Tesla V100 SXM2, InfiniBand HDR 100, HPE Saudi Aramco Saudi Arabia	672,520	22,400.0	55,423.6	

How do we get optimal performance from these supercomputers?

- Compilers
- Algorithms/data structures
- Load balancing

How do we get optimal performance from these supercomputers?

- Compilers
- Algorithms/data structures
- Load balancing

Particle-mesh simulations can suffer from load imbalance.

Particle-mesh simulations can suffer from load imbalance.

Load imbalance can be corrected at run time.

Basic load balance algorithm for distributed memory particle-mesh:

```
1 if (step % loadBalanceInterval == 0) {
       float currEff = 0.0, propEff = 0.0;
       DistMapping newDM = makeNewDM(costs,
                                      curreff, propeff);
       bool globUpdateDM = false;
       if (myRank == root) {
 6
           globUpdateDM = (propEff > 1.1*currEff);
8
       bcast(&globUpdateDM, 1, root);
       if (globUpdateDM) {
11
           bcast(&newDM[0], newDM.size(), root);
12
           updateDistributionMapping(newDM);
13
14 }
```

How should *costs* be measured when running on a GPU-accelerated machine?

- 1. Start timer
- 2. Launch kernel
- 3. Stop timer

How should *costs* be measured when running on a GPU-accelerated machine?

How should *costs* be measured when running on a GPU-accelerated machine?

Not like this! CPU and GPU are asynchronous.

These are a few strategies appropriate for cost assessment on GPU machines:

 Heuristic: number of particles and cells as proxy for compute work

These are a few strategies appropriate for cost assessment on GPU machines:

- Heuristic: number of particles and cells as proxy for compute work
- CUPTI: use CUDA Profiling Tools Interface to access kernel times

These are a few strategies appropriate for cost assessment on GPU machines:

- Heuristic: number of particles and cells as proxy for compute work
- CUPTI: use CUDA Profiling Tools Interface to access kernel times
- *GPU clock*: use thread-summed kernel times as relative measure of compute work

How to measure costs with heuristic?

Cost for rank i is linear combination of number of particles and cells:

$$c_i = \alpha \cdot n_{\text{particles}} + \beta \cdot n_{\text{cells}}$$

- α and β are parameters representing relative computational cost of single particle vs. single cell
- α and β change depending on algorithm, hardware
- In general, α and β should be measured

How to measure costs with heuristic?

Cost for rank i is linear combination of number of particles and cells:

$$c_i = \alpha \cdot n_{\text{particles}} + \beta \cdot n_{\text{cells}}$$

- α and β are parameters representing relative computational cost of single particle vs. single cell
- α and β change depending on algorithm, hardware
- In general, α and β should be measured
- Pros: vendor agnostic, low overhead

How to measure costs with heuristic?

Cost for rank i is linear combination of number of particles and cells:

$$c_i = \alpha \cdot n_{\text{particles}} + \beta \cdot n_{\text{cells}}$$

- α and β are parameters representing relative computational cost of single particle vs. single cell
- α and β change depending on algorithm, hardware
- In general, α and β should be measured
- Pros: vendor agnostic, low overhead
- Cons: cumbersome tuning of parameters

CUDA Profiling Tools Interface (CUPTI): docs.nvidia.com/cuda/cupti GPU activity triggers callback functions to return CUPTI buffers

CUDA Profiling Tools Interface (CUPTI): docs.nvidia.com/cuda/cupti GPU activity triggers callback functions to return CUPTI buffers

• Pros: API enables powerful profiling capabilities

CUDA Profiling Tools Interface (CUPTI): docs.nvidia.com/cuda/cupti GPU activity triggers callback functions to return CUPTI buffers

- Pros: API enables powerful profiling capabilities
- Cons: overhead, vendor specific

Initialize the trace:

```
1 cuptiActivityEnable(CUPTI_ACTIVITY_KIND_CONCURRENT_KERNEL);
2 cuptiActivityRegisterCallbacks(bfrRequest, bfrCompleted);
```

Trigger callback functions:

Initialize the trace:

```
1 cuptiActivityEnable(CUPTI_ACTIVITY_KIND_CONCURRENT_KERNEL);
2 cuptiActivityRegisterCallbacks(bfrRequest, bfrCompleted);
```

Trigger callback functions:

```
1 void CUPTI API bfrRequest (uint8_t **bfr, ...)
2 {...}
3 void CUPTI API bfrCompleted (uint8_t *bfr, ...)
4 {...}
5
6 :
7
8 mykernel<<<...>>>(...);
9 cuptiActivityFlushAll(0); // Wait for return of CUPTI
10 → bfrCompleted(...); // records via callback function
```

Estimate relative compute work from thread-summed kernel time

Estimate relative compute work from thread-summed kernel time

```
Launch
CPU
                  kernels
                            -- (clock())
                                           Work (\operatorname{clock}()) \operatorname{cost}_1 += \Delta t_1
GPU
             Stream 2 ----- clock() Work clock() cost_2 += \Delta t_2 -
                                    -- clock() Work clock() cost_3 += \Delta t_3
             Stream 3 -
                                         :<del>K :</del>∆t₁→:
                                                          Time
```

Pros: vendor agnostic, no hyperparameter tuning

Estimate relative compute work from thread-summed kernel time

- Pros: vendor agnostic, no hyperparameter tuning
- Cons: requires some data movement

Add the thread cycles, using atomicAdd for thread safety:

```
1 __global__ void mykernel (...) {
2    float cycles = clock();
3    :
4    // thread work
5    :
6    cycles = clock() - cycles;
7    // cost_ptr is the pointer to rank's cost
9    atomicAdd(cost_ptr, cycles);
10 }
```

Reduced overhead using pinned host memory

Add the thread cycles, using atomicAdd for thread safety:

```
1 __global__ void mykernel (...) {
2    float cycles = clock();
3    :
4    // thread work
5    :
6    cycles = clock() - cycles;
7    // cost_ptr is the pointer to rank's cost
9    atomicAdd(cost_ptr, cycles);
10 }
```

- Reduced overhead using pinned host memory
- To use this: instrument most expensive kernels

Add the thread cycles, using atomicAdd for thread safety:

```
1 __global__ void mykernel (...) {
2    float cycles = clock();
3    :
4    // thread work
5    :
6    cycles = clock() - cycles;
7    // cost_ptr is the pointer to rank's cost
9    atomicAdd(cost_ptr, cycles);
10 }
```

- Reduced overhead using pinned host memory
- To use this: instrument most expensive kernels
- Overcomes weakness of heuristic: that has no sensitivity to how much particles move

Outline:

- 1. Load balancing intro
- 2. Dynamic load balancing in PIC code run on GPUs

We studied these strategies in the particlein-cell code WarpX.

WarpX: advanced PIC code

github.com/ECP-WarpX/WarpX

AMReX: mesh framework

github.com/AMReX-Codes/amrex

WarpX advanced physics

AMReX mesh infrastructure, algorithms

MPI

CUDA, OpenMP, DPC++, HIP

We choose *laser-ion acceleration* as a challenging test problem.

Rapid changes in particle, field spatial profiles → challenge problem Numerical experiments: 6–6144 Nvidia V100 GPUs on OLCF Summit

The inhomogeneity translates to different computational costs.

Computational costs are used to compute optimal mapping from MPI rank to domain.

Knapsack: distribute costs to ranks as equally as possible Space-filling curve (SFC): enumerate ranks along curve and partition

Dynamic load balancing is crucial to performance.

Static load balancing is not enough!

Efficiency: average cost/mean cost

$$E \equiv c_{\rm avg}/c_{\rm max}$$

With optimal selection of parameters, we achieve around 3x-4x speedup.

Optimal performance with:

- GPU clock cost collection
- Knapsack algorithm
- 9 boxes per GPU
- 10 steps to check rebalance
- 10% improvement threshold

With optimal selection of parameters, we achieve around 3x-4x speedup.

Optimal performance with:

- GPU clock cost collection
- Knapsack algorithm
- 9 boxes per GPU
- 10 steps to check rebalance
- 10% improvement threshold

1.2x speedup over static lb

With optimal selection of parameters, we achieve around 3x-4x speedup.

Optimal performance with:

- GPU clock cost collection
- Knapsack algorithm
- 9 boxes per GPU
- 10 steps to check rebalance
- 10% improvement threshold

1.2x speedup over static lb3.8x speedup over no lb

How much improvement expected from load balancing?

Performance model w/ strong-scaling as input:

$$S = \left(\frac{c_{\text{max}0}}{c_{\text{avg}0}}\right)^x = \left(\frac{1}{E_0}\right)^x$$

Estimate speedup S as ∞ initial load imbalance

The load balancing scheme achieves 62%–74% of theoretical maximum.

The load balancing scheme achieves 62%–74% of theoretical maximum.

Avoid out-of-memory on GPUs with load balancing!

• Introduced GPU-applicable strategies for measuring relative computational costs of sub-domains of computational work

- Introduced GPU-applicable strategies for measuring relative computational costs of sub-domains of computational work
- Implemented potentially vendor-neutral, in-situ, in-kernel cost measurement strategy based on GPU clock

- Introduced GPU-applicable strategies for measuring relative computational costs of sub-domains of computational work
- Implemented potentially vendor-neutral, in-situ, in-kernel cost measurement strategy based on GPU clock
- Implemented Nvidia CUPTI cost measurement → overhead

- Introduced GPU-applicable strategies for measuring relative computational costs of sub-domains of computational work
- Implemented potentially vendor-neutral, in-situ, in-kernel cost measurement strategy based on GPU clock
- Implemented Nvidia CUPTI cost measurement → overhead
- Demonstrated effective GPU dynamic load balancing running challenging use case WarpX at scale (6-6144 GPUs) on Summit

- Introduced GPU-applicable strategies for measuring relative computational costs of sub-domains of computational work
- Implemented potentially vendor-neutral, in-situ, in-kernel cost measurement strategy based on GPU clock
- Implemented Nvidia CUPTI cost measurement → overhead
- Demonstrated effective GPU dynamic load balancing running challenging use case WarpX at scale (6-6144 GPUs) on Summit
- Introduced strong-scaling based performance model

With new strategies for GPU cost assessment, we achieved 3x-4x speedup on challenging plasma physics problem.

Work is open source:

- WarpX: github.com/ECP-WarpX/WarpX
- AMReX: github.com/AMReX-Codes/amrex

Code, environment, tests all available at:

https://zenodo.org/record/4708449#.YIEmmJNKhR0

See preprint here:

https://arxiv.org/abs/2104.11385

Personal github:

https://github.com/mrowan137

WarpX team*: physicists + applied mathematicians + computer scientists

WarpX team*: physicists + applied mathematicians + computer scientists

Maxence

Thévenet

Thank you! I am happy to answer any questions.

Performance is tuned with additional algorithm-specific parameters.

Heuristic, GPU clock, CUPTI: cost collection method

Knapsack, SFC: algorithm to update distribution mapping

Boxes per GPU: controls size of domain decomposition

Load balance interval: how often to try rebalancing

Improvement threshold: required improvement to rebalance

