
Precision Atomic Spectroscopy of 

Lithium

Mike Rowan



We study atoms because…

• Atoms are relatively simple

Good theoretical understanding of atoms

We can make models and calculations

• We can control them well by use of lasers

Extreme accuracy of measurements serve       
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We study atoms because…

• Atoms are relatively simple

Good theoretical understanding of atoms

We can make models and calculations

• We can control them well by use of lasers

Extreme accuracy of measurements serve       

as tests of our understanding

• Fundamental constants – are they changing?

• General relativity 

• Weak interaction 

• Quantum electrodynamics

High-precision experiments provide tests of fundamental physics
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• Spectroscopy – how light interacts with atoms

• Energy of a photon proportional to frequency (color); E=hν

• First, we excite an atom using light

• The atom then decays back to the ground state

• We detect fluorescence with a PMT
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• Spectroscopy – how light interacts with atoms

• Energy of a photon proportional to frequency (color); E=hν

• First, we excite an atom using light

• The atom then decays back to the ground state

• We detect fluorescence with a PMT

How do we study atoms?

Light Source

e

Detector (PMT)

If the color is not right, we don’t get a transition

No Transition



What’s that frequency?

Frequency
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What’s the frequency where 

we find the peak?



How do we study atoms?
• Frequencies for transitions are in visible region  

400,000,000,000,000 cycles per second!

• Modern electronics can only respond at about

10,000,000,000 cycles per second

• To get around this, we use “interference” to 
produce a measurable frequency



Interference

• The rate of a beat is the difference of two frequencies – it  

results from the interference of two slightly different 

frequencies 

• We hear this as a periodic variation in volume

• If you know one frequency and you know the beat 

frequency, then you can determine the second frequency

• By interfering frequencies of visible light, we get a beat 

frequency that is in the radio range – this is measurable

time
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How do we use interference when 

dealing with optical frequencies?
• We make a “light ruler” – analogous to normal ruler

• By interfering different colors in the comb, we can 
produce radio frequencies that are slow enough to count
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How do we use interference when 

dealing with optical frequencies?
• We make a “light ruler” – analogous to normal ruler

• By interfering different colors in the comb, we can 
produce radio frequencies that are slow enough to count

Comb Equation: n = n frep+ f0

Offset – 1cm # of ticks - 30

spacing – 1mm

Offset – frequency from 

lowest mode to 0, f0

spacing – frep

# of ticks  

(mode)– n
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Why lithium?
• It is simple (like a noble gas and an electron)

• Since it is simple, theory is good

• Two stable isotopes

• Disagreement among previous measurements
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• Two stable isotopes

• Disagreement among previous measurements

Alkali metals
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Theory has small error bars
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Theory has small error bars

• Error bars for theory are very small – experiment should 

be able to do better than current measurements

• Possibly incorrect data analysis or systematic effects

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
Frequency Deviation from 

Weighted Mean of Measurements (MHz)

(b)

(a*)

(d)

(c)

(e)

(f)

(g)

7Li D1 Hyperfine Structure Splitting

Theory
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Experimental Setup

Laser

DetectorAtomic

Beam

Frequency comb



Laser – same kind in a CD player!

laser diode

laser cavity

controls cavity length





Old nozzle



Data from last spring



• Longer than the old nozzle

• Will provide a more 

collimated atomic beam

…New Nozzle!



How will the new nozzle improve the data?

Old nozzle:  peaks 

are less resolved 
New nozzle: more  

structure observed 



Other changes since old data
• Oven is fixed

• Reloaded the oven with lithium

• Earth’s magnetic field at center of vacuum has been 

compensated with coils

• Improved laser stability 



Future Work

• Gather data

• Data analysis

• Laser cool and trap atoms



4



4



4


4

Laser cooled and 

trapped atoms
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How do we make a frequency comb?

Pump

M1 M2

OCM3

lens



How do we make a frequency 

comb?

• The comb is produced by a series of ultrashort pulses

• Phase coherence of the pulses leads to interference and 

the generation of an optical frequency comb.

• Pulses are produced by a modelocked laser

t

E(t)

 ~10-14 s

t ~10-9 s
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