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We study atoms because...

« Atoms are relatively simple
Good theoretical understanding of atoms
We can make models and calculations

* \We can control them well by use of lasers

Extreme accuracy of measurements serve
as tests of our understanding
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« Atoms are relatively simple
‘ Good theoretical understanding of atoms
We can make models and calculations

* \We can control them well by use of lasers

‘ Extreme accuracy of measurements serve
as tests of our understanding

High-precision experiments provide tests of fundamental physics

* Fundamental constants — are they changing?
» General relativity

« Weak interaction

* Quantum electrodynamics



How do we study atoms?

« Spectroscopy — how light interacts with atoms

« Energy of a photon proportional to frequency (color); E=hv
« First, we excite an atom using light

« The atom then decays back to the ground state

« We detect fluorescence with a PMT

Light Source @

Detector (PMT) ’
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How do we study atoms?

« Spectroscopy — how light interacts with atoms

« Energy of a photon proportional to frequency (color); E=hv
« First, we excite an atom using light

« The atom then decays back to the ground state

« We detect fluorescence with a PMT

No Transition
©

AVAVAVAVAV ..
Light Source @

Detector (PMT) ’

If the color is not right, we don’t get a transition



Fluorescence

What's that frequency?

What's the frequency where
we find the peak?

Frequency



How do we study atoms?

* Frequencies for transitions are in visible region

400,000,000,000,000 cycles per second!

* Modern electronics can only respond at about

10,000,000,000 cycles per second

« To get around this, we use “interference” to
produce a measurable frequency



amplitude

Interference

The rate of a beat is the difference of two frequencies — it
results from the interference of two slightly different
frequencies
We hear this as a periodic variation in volume

time :
If you know one frequency and you know the beat
frequency, then you can determine the second frequency
By interfering frequencies of visible light, we get a beat
frequency that is in the radio range — this is measurable



How do we use interference when
dealing with optical frequencies?

 We make a “light ruler” — analogous to normal ruler

* By interfering different colors in the comb, we can
produce radio frequencies that are slow enough to count
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How do we use interference when
dealing with optical frequencies?

 We make a “light ruler” — analogous to normal ruler
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Frequency Comb

!

Frequencies
range from
visible to
infrared




Frequency Comb
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Why lithium?

It is simple (like a noble gas and an electron)
Since it is simple, theory is good

Two stable isotopes

Disagreement among previous measurements
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Energy level diagram for lithium
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Energy level diagram for lithium
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Theory has small error bars

’Li D1 Hyperfine Structure Splitting
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Theory has small error bars

’Li D1 Hyperfine Structure Splitting

—e—— (f)

@re
- T T T 1 1
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
Frequency Deviation from
Weighted Mean of Measurements (MHz)

« Error bars for theory are very small — experiment should
be able to do better than current measurements

* Possibly incorrect data analysis or systematic effects



Experimental Setup

Frequency comb
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Experimental Setup

Atomic Detector
Beam

Frequency comb
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Laser — same kind in a CD player!
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Old nozzle




Data from last spring
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.New Nozzle!

« Longer than the old nozzle

« Wil provide a more
_m . collimated atomic beam

‘_r -




How will the new nozzle improve the data?

Old nozzle: peaks New nozzle: more
are less resolved structure observed



Other changes since old data

« QOven is fixed

« Reloaded the oven with lithium

« Earth’s magnetic field at center of vacuum has been
compensated with colls

« Improved laser stability



Future Work

« Gather data
« Data analysis
» Laser cool and trap atoms

Laser cooled and
trapped atoms

™ A
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How do we make a frequency comb?
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How do we make a frequency
comb?

« The comb is produced by a series of ultrashort pulses

E®t)

}q—At ~10°s —»‘

 Phase coherence of the pulses leads to interference and
the generation of an optical frequency comb

* Pulses are produced by a modelocked laser
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