
BERKELEY LAB Office of
Science1

Use of CUDA Profiling Tools Interface (CUPTI) for
Profiling Asynchronous GPU Activity
Michael E. Rowan
NERSC Exascale Science Applications Program
National Energy Research Scientific Computing Center

2020 CS Postdoc Symposium
Presentation

BERKELEY LAB Office of
Science2

Real-time measurement of kernel execution time is needed for correct
load balancing in GPU-accelerated codes

● On-the-fly measurement not
possible with standard profiling
tools (NVProf, Nsight)

● Developed a method (CUPTI
Callback timing) for real-time
measurement of kernel time

● Impact:
○ Provides accurate kernel

timing on-the-fly
○ Enables correct load

balancing in WarpX

BERKELEY LAB Office of
Science3

● What happens if we try to measure kernel execution time naively?

Cannot measure execution time on GPU the same way as on CPU!

1. Start timer
2. Launch kernel
3. Stop timer

BERKELEY LAB Office of
Science4

● What happens if we try to measure kernel execution time naively?

Cannot measure execution time on GPU the same way as on CPU!

1. Start timer
2. Launch kernel
3. Stop timer

BERKELEY LAB Office of
Science5

● What happens if we try to measure kernel execution time naively?

Cannot measure execution time on GPU the same way as on CPU!

1. Start timer
2. Launch kernel
3. Stop timerThe usual CPU timing

approach fails for GPU

BERKELEY LAB Office of
Science6

● GPU operations are asynchronous with respect to:
○ Streams (series of operations which execute in issue order)

■ Operations across streams may be interleaved
■ While operations within a stream execute in-order, there is no

relationship between issue order execution order for operations in
different streams

○ Host
■ Kernel execution, e.g., is by default asynchronous with host

kernel<<<...>>>(...)
cpuWork(...)

May overlap, as kernel
launch is non-blocking

GPU work is in general asynchronous

BERKELEY LAB Office of
Science7

Three possible on-the-fly timing strategies

1. Count GPU clock cycles

○ Requires additional device-to-host transfers

○ Implementation may be invasive

2. CUDA Events

○ Can give ambiguous results

3. CUDA Profiling Tools Interface (CUPTI)

○ Buffer requests and delivery of timing

information handled by CUPTI

○ Gives unambiguous kernel timings

1. Start GPU timer
2. Do GPU kernel work
3. Stop GPU timer
4. Send elapsed time to host

BERKELEY LAB Office of
Science8

Three possible on-the-fly timing strategies

1. Count GPU clock cycles

○ Requires additional device-to-host transfers

○ Implementation may be invasive

2. CUDA Events

○ Can give ambiguous results

3. CUDA Profiling Tools Interface (CUPTI)

○ Buffer requests and delivery of timing

information handled by CUPTI

○ Gives unambiguous kernel timings

1. Start GPU timer
2. Do GPU kernel work
3. Stop GPU timer
4. Send elapsed time to host

BERKELEY LAB Office of
Science9

Three possible on-the-fly timing strategies

1. Count GPU clock cycles

○ Requires additional device-to-host transfers

○ Implementation may be invasive

2. CUDA Events

○ Can give ambiguous results

3. CUDA Profiling Tools Interface (CUPTI)

○ Buffer requests and delivery of timing

information handled by CUPTI

○ Gives unambiguous kernel timings

1. Start GPU timer
2. Do GPU kernel work
3. Stop GPU timer
4. Send elapsed time to host

BERKELEY LAB Office of
Science10

Three possible on-the-fly timing strategies

1. Count GPU clock cycles

○ Requires additional device-to-host transfers

○ Implementation may be invasive

2. CUDA Events

○ Can give ambiguous results

3. CUDA Profiling Tools Interface (CUPTI)

○ Buffer requests and delivery of timing

information handled by CUPTI

○ Gives unambiguous kernel timings

1. Start GPU timer
2. Do GPU kernel work
3. Stop GPU timer
4. Send elapsed time to host

BERKELEY LAB Office of
Science11

● Register callback functions to manage buffer request/delivery of ‘activity records’
● Callbacks triggered by GPU activity
● Access returned records

Adopted solution: CUDA Profiling Tools Interface (CUPTI)

holds information about GPU
or operations on GPU;
different kinds for kernels,
memory transfers, etc.

BERKELEY LAB Office of
Science12

Timing with CUPTI Callback functions consists of just a few steps:

● Initialize trace:
○ Enable collection of kernel activity records
○ Register callback functions

● Trigger callback functions; schematically, they look like this:
void CUPTI API bfrRequest (uint8_t **bfr, ...)
{

// Signal to CUPTI client that an empty buffer is needed by CUPTI
}
void CUPTI API bfrCompleted (uint8_t *bfr, ...)
{

// Return a buffer of completed activity records to CUPTI client
}

cuptiActivityEnable(CUPTI_ACTIVITY_KIND_CONCURRENT_KERNEL);
cuptiActivityRegisterCallbacks(bfrRequest, bfrCompleted);

BERKELEY LAB Office of
Science13

Results: implemented CUPTI-Callback timer in AMReX (Adaptive
Mesh Refinement library), and tested with simple kernels

● We tested the CUPTI-based timer
using a simple device sleep function

● With NVIDIA Volta V100 (peak clock
frequency: 1.53 GHz), we launched
sleep kernels on separate streams for
multiples of 1, 2, 3, and 4×108 cycles
(≈ 65 ms)

BERKELEY LAB Office of
Science14

Tested the CUPTI Callback timer in a more realistic use case, the
advanced electromagnetic particle-in-cell code WarpX

● WarpX: Advanced Electromagnetic
Particle-in-Cell Code

○ Simulates laser wakefield
acceleration with mesh
refinement

○ Built on AMReX
● With the CUPTI Callback timer now

implemented in AMReX, load
balancing which properly accounts
for GPU work is possible in WarpX

BERKELEY LAB Office of
Science15

Used CUPTI Callback timing as input to load balancing modules for a
WarpX test problem

● Plot to the right is the 2D
average along y of
particles per cell at t = 0

● Dark blue stripe is a
region of high particle
density

● White region has no
particles

● Light red lines show
domain decomposition

● Load-imbalanced
problem, by construction

Initial state is load-imbalanced

BERKELEY LAB Office of
Science16

Used CUPTI Callback timing as input to load balancing modules for a
WarpX test problem

● Plot to the right shows time
evolution of ‘cost’ per GPU

● Load balance every 25
steps (for this case)

● Cost initially imbalanced
(ranks, 4 – 7 do most of the
work)

● Work is more evenly
distributed after step 25

Before load
balance

BERKELEY LAB Office of
Science17

Used CUPTI Callback timing as input to load balancing modules for a
WarpX test problem

● Plot to the right shows time
evolution of ‘cost’ per GPU

● Load balance every 25
steps (for this case)

● Cost initially imbalanced
(ranks, 4 – 7 do most of the
work)

● Work is more evenly
distributed after step 25

After load
balance

BERKELEY LAB Office of
Science18

● Red curve shows case
with no load balancing

● Blue curve shows case
with load balance every
125 steps

● Prior to the first load
balance (step=125),
work is unevenly
distributed over GPUs

● After load balance,
work is distributed more
evenly → performance
improvement

In this test case, get a speedup of ~2x

BERKELEY LAB Office of
Science19

Overhead incurred with CUPTI timers is small

● Comparison of walltime
for WarpX simulation
with CUPTI initialized
(dark blue) and without
CUPTI (light red)

● Agreement between red
and blue demonstrates
that there is only a
small overhead when
using CUPTI

BERKELEY LAB Office of
Science20

Conclusion

● Developed a technique (CUPTI
Callback timing) for real-time GPU
kernel profiling

● Implemented in AMReX
● Impact:

○ Provides accurate kernel
timing in real time

○ Enables correct load
balancing in WarpX

● Future work:
○ Load balancing in ion

acceleration problem

