
Introduction1
     The ultra-low-luminosity source at the center of the Milky Way, 
Sagittarius A* (Sgr A*), is thought to be powered by accretion onto a 
supermassive black hole.  Sgr A* radiates well below the Eddington 
limit and there is strong evidence that the accreting gas can be 
described as an advection-dominated accretion flow (ADAF, also 
referred to as a radiatively inefficient accretion flow [RIAF]; Narayan 
& Yi 1994, 1995a, 1995b; Abramowicz et al. 1995; Narayan & 
McClintock 2008; Yuan & Narayan 2014).  In ADAFs, the disk is 
geometrically thick and optically thin.  Additionally, the plasma is 
predicted to be two-temperature for several reasons: first, in the 
ADAF configuration, the density of accreting gas is low enough that 
Coulomb collisions between electrons and protons are extremely rare 
on accretion timescales, so that the species become thermally 
decoupled.  Second, electrons radiate more efficiently than protons.  
Lastly, relativistic electrons are heated less than nonrelativistic 
protons when subjected to the same adiabatic compression.  For all 
these reasons, the plasma is expected to be two-temperature, with 
protons significantly hotter than electrons (Narayan & Yi 1995b; Yuan 
et al. 2003).
     Despite the above arguments, the two-temperature gas may be 
driven to a single-temperature state by kinetic processes, such as 
reconnection and instabilities (Quataert et. al. 2002; Riquelme et al. 
2012, 2015; Sironi 2015; Sironi & Narayan 2015; Werner et al. 2016).  
To capture the effects of these plasma processes, one requires a fully 
kinetic description, which can be achieved via numerical techniques 
such as particle-in-cell (PIC) simulations.  In principle, such ab initio 
simulations can be used to provide the necessary subgrid physics 
that to date cannot be captured in magnetohydrodynamic 
simulations (e.g., Ressler et al. 2015, 2017;  Ball et al. 2016, 2017; 
Chael et al. 2017; Sädowski et al. 2017). 
     In supermassive black hole accretion flows, the ratio of ion 
thermal pressure to magnetic pressure, βi=8πn0kBTi/B0², is expected to 
vary in the disk midplane in the range βi~10-30.  However, in plasma 
far above and below the midplane, i.e., the "corona," the system is 
expected to be magnetically dominated, such that βi<1.  Here, the 
dissipation of magnetic energy via reconnection can result in particle 
heating, acceleration, and bulk motion.
     Even in the magnetized corona, the magnetization, σi=B0²/4πn0mic², 
is generally small, i.e., σi≲1.  Electron heating by reconnection in the 
nonrelativistic limit (σi≪1) has been studied extensively, both 
theoretically and by means of PIC simulations, in the context of the 
solar wind, Earth's magnetotail, and laboratory plasmas (Hoshino et 
al. 2001; Jaroschek et al. 2004; Schoeffler et al. 2011, 2013; Loureiro 
et al. 2013; Dahlin et al 2014; Daughton et al. 2014; Shay et al. 
2014; Haggerty at al. 2015; Li et al. 2015; Numata & Loureiro 2015; 
Le et al. 2016; Li et al. 2017).  Though less commonly studied, 
relativistic reconnection (i.e., σi≫1) in electron-proton plasmas has 
also received some attention in recent years (Sironi et al. 2015; Guo 
et al. 2016).  In this work, we study particle heating in the less 
explored transrelativistic regime (i.e., σi≲1).  
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Results: Reconnection at Low and High βᵢ4

Simulation Setup2
     We use the electromagnetic PIC code TRISTAN-MP to perform fully 
kinetic simulations of reconnection (Buneman 1993; Spitkovsky 
2005).  We employ 2D simulations, but all three components of 
velocity and electromagnetic fields are tracked.  The initial field 
configuration is illustrated in the figure below.  From the red to the 
blue region, the polarity of the inflow magnetic field reverses, as 
shown by the white arrows.  The reconnection layer is initialized in 
Harris equilibrium.  The field strength is parametrized via the 
magnetization σw=B0²/4πw, where B0 is the magnitude of the magnetic 
field in the inflow region, and w is the enthalpy density per unit 
volume.  We focus on antiparallel reconnection, and typically employ 
periodic boundary conditions along the x direction.

     
     

     We investigate mass ratios mi/me=10,	25,	50, and 1836 for βi in the 
range 5e-4 to 2 (with fixed σw=0.1 and equal temperature ratio).  With 
realistic mass ratios, we explore the βi dependence of particle heating 
at higher values of the magnetization, σw=0.3,	1,	3, and 10.  For our 
fiducial σw=0.1 and mass ratio up to the realistic value, we investigate 
temperature ratios Te/Ti=0.1,	0.3, and 1.

      We show that heating in the high-βi regime is primarily dominated by adiabatic compression, while for low βi the 
heating is genuine, in the sense that it is associated with an increase in entropy.  Protons are heated much more 
efficiently than electrons at low and moderate βi (by a factor of ~7), whereas the electron and proton heating efficiencies 
become comparable at βi~2 (if Te/Ti=1).  We find that comparable heating efficiencies between electrons and protons are 
achieved when the scale separation between the two species in the reconnection exhaust approaches unity, so that the 
electron-proton plasma effectively resembles an electron-positron fluid.  This occurs at high β i for low magnetizations, or 
regardless of βi at high magnetizations.
      This investigation provides important insights into the physics of low-luminosity accretion flows, such as the 
accretion disk of Sgr A*.  Our results can be used to provide general relativistic MHD simulations of accretion flows with 
the subgrid physics of energy partition between electrons and protons.

     We characterize reconnection heating efficiency by the ratios MTe,tot=(kBTe,down	-	kBTe,up)/(σi	mi/me	mec²) for electrons, and MTi,tot=(kBTi,down	-	kBTi,up)/(σi	mic²) 
for protons, where the subscripts 'up' (for upstream) and 'down' (for downstream) refer to the region in which the temperature is computed.  
Analogous ratio MTe,irr,	M	Ti,irr,	MTe,ad, and MTi,ad characterize the irreversible (i.e., associated with  genuine increase and entropy) and adiabatic (i.e., 
resulting from adiabatic compression) contributions to the total heating.
     We identify downstream cells by using a particle mixing criterion between the two sides of the current sheet.  Particles that originate above y=0 
(top of the domain) are tagged, to distinguish them from particles originating below y=0 (bottom of the domain).  The figure below shows the ratio of 
top to total number density.  Away from the current sheet, i.e., in the blue and red regions, there is no mixing between the two populations.  Particles 
from the two sides of the current sheet get mixed as they enter the reconnection layer;  the region with the greatest amount of mixing is shown in 
white/light yellow.  We compute the ratio of top particle density to total particle density in each cell.  If this ratio in a given cell exceeds a chosen 
threshold, and is below the complementary threshold, then the cell is counted as one where plasma has reconnected (i.e., the cell belongs to the 
reconnection downstream).  Cells belonging to the upstream are identified by a similar criterion; if mixing between the two populations is low, (or 
high) enough, the cells is counted as belonging to the upstream.  This technique is similar to that used in Daughton et al (2014).

    The physics of reconnection shows a marked difference between low- and high-βi regimes.  In the figure below, we show a direct comparison 
between one low-βi and one high-βi simulation.  The left column refers to βi=0.0078, whereas βi=0.5 for the right column.  In both cases, σw=0.1.  In the 
top row, we show the profiled along x of the outflow velocity for protons (red) and electrons (blue). The horizontal dashed lines show the Alfvén limit,    
|vout/vA|=1.  We show in the middle row of panels the x-profile of the dimensionless electron temperature in the upstream (magenta) and downstream 
(green).  Here, vertical dotted lines indicate the regions in the downstream used to calculate heating efficiencies.  In the bottom row, we show 2D plots 
of the logarithm of electron dimensionless temperature. 

     We find that electrons 
move slightly faster than 
protons in the vicinity of 
the central X-point, but at 
larger distances the speeds 
of the two species are the 
same, and they saturate at 
a fixed fraction of the 
Alfvén limit.
     The secondary magnetic 
islands present in the low-βi 
simulation (panel (c)) are 
correlated with spikes in 
the downstream electron 
temperature (see the peak 
near x=-500	c/ωpe in panel 
(b); ωpe here is the electron 
plasma frequency, so that 
c/ωpe is the electron skin 
depth).  Aside from the 
temperature spikes at low 
βi, the temperature profiles 
demonstrate that, far 
enough from the central X-
point, the electron 
temperature is nearly 
uniform.

     In the figure below, we show the mass ratio dependence of heating efficiencies: (a) electron total, (b) electron 
adiabatic, (c) electron irreversible, (d) proton total, (e) proton adiabatic, and (f) proton irreversible, for Te/Ti=1 
simulations with mass ratios mi/me=10 (dotted), 25 (dashed), and 1836 (solid).  Points in panels (a)-(c) are colored 
according to electron dimensionless temperature in the upstream (see color bar to the right of panel (c)), and points in 
panels (d)-(f) are colored according to proton dimensionless temperature in the upstream (color bar is to the right of 
panel (f)).  The irreversible heating is remarkably independent of mass ratio at high βi(=2), while at low βi, the 
irreversible electron heating efficiency decreases with increasing mass ratio.

     We show, in the figure below, the dependence of the heating efficiencies on magnetization σw (normalized to the 
enthalpy density), with a layout similar to the above figure:  (a) electron total, (b) electron adiabatic, (c) electron 
irreversible, (d) proton total, (e) proton adiabatic, and (f) proton irreversible.  We fix Te/Ti=1 and mi/me=1836 and vary 
the magnetization σw=0.1 (green), 0.3 (purple), 1 (brown), 3 (magenta), 10 (black).  Points in panels (a)-(c) are colored 
according to the upstream electron dimensionless temperature (color bar is to the right of panel (c)), and points in 
panels (d)-(f) are colored according to the upstream proton dimensionless temperature (color bar is to the right of 
panel (f)).

     In the figure below, we show a comparison between the electron-to-overall heating ratio que,tot=Mue,tot/(Mue,tot+Mui,tot) 
between our simulations with mi/me=1836 and Te/Ti=1 (filled circles with error bars) and the best-fitting formula que,fit=

(1/2)exp[-(1-βi/βi,max)³⋅³/(1+1.2	σw⁰⋅⁷)], where βi≤βi,max=1/4σw; the fitting formula is shown by solid curves.  We show the 
dependence on (a) plasma-βi and (b) magnetiation σw.  In panel (a), the different colors represent magnetizations 
σw=0.1 (green), 0.3 (purple), 1 (brown), 3 (magenta), and 10 (black).  In panel (b), the color coding of the curves is 
indicated in the legend (from cyan to red for increasing βi), while the color of the filled points refers to the color bar to 
the right of panel (b).  In both panels (a) and (b), the black dotted line at que,tot=0.5 shows the limit of comparable 
heating efficiencies between electrons and protons, as expected when βi→βi,max (regardless of σw) or σw≫1 
(independently of βi).  In panel (c), we show the betai dependence of downstream proton-to-electron skin depth ratio 
(c/ωpi)/(c/ωpe), for magnetizations σw=0.1 (green), 0.3 (purple), 1 (brown), 3 (magenta), and 10 (black).  For these 
simulations, the upstream electron-to-proton temperature is Te/Ti=1, and mi/me=1836.
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