
Use of CUDA Profiling Tools Interface (CUPTI) for
Profiling Asynchronous GPU Activity
Michael E. Rowan (mrowan@lbl.gov), Jack R. Deslippe, Kevin N. Gott, Axel Huebl, Remi Lehe, Andrew T. Myers,

Maxence Thévenet, Jean-Luc Vay, and Weiqun Zhang — Lawrence Berkeley National Laboratory

Introduction
On-the-fly performance monitoring of applications is needed for
adaptive load balancing. For applications which employ GPU
acceleration, active performance monitoring is complicated by the
possibility of concurrent kernel execution on the device, and by
asynchronous kernel launches from the host [1, 2].

Here, we present a case study in the use of the CUPTI (CUDA
Profiling Tools Interface) library for active performance monitoring
of a simplified GPU kernel, and a more realistic case from the
advanced electromagnetic particle-in-cell code WarpX [3, 4]. In
the future, this implementation of performance monitoring with
CUPTI may be used in load balancing for WarpX.

Summary and future work
• Tested CUPTI-based GPU timing for simple test cases,

as well as a more realistic use case with WarpX

• CUPTI allows for accurate timing of kernel execution.

• CUPTI timing strategy will enable GPU timing and load
balancing which incorporates GPU work in realistic
WarpX problems, for example ion acceleration via laser-
plasma interaction.

Implementation and tests
We implement the CUPTI-based timer as a module in the Adaptive Mesh Refinement (AMR)
library AMReX [5]. We test the CUPTI-based timer using a simple function deviceSleep, which
instructs the device to be inactive (on a per-stream basis) for a chosen number of cycles. For the
test shown below, we use NVIDIA Volta V100, with a peak clock frequency of 1.53 GHz, and
launch sleep kernels on four separate streams, for multiples of 1, 2, 3, and 4 × 10⁸ cycles. The
bar plot at the bottom illustrates the (concurrent) execution of these kernels across streams; the
bar plot on the right shows a comparison between the instructed (light red), and measured (dark
blue) sleep times obtained via CUPTI; close agreement between the two indicates that the
CUPTI measurements are accurate.

The code snippet below shows a sample of instrumented code from the particle-in-cell code
WarpX; to collect activity records via CUPTI, a ‘trace’ is initialized before CUDA is initialized.
Trace initialization consists of two steps:

• Enable collection of kernel activity records via CUPTI

• Register callback functions to handle storage and delivery of kernel activity records

Callback functions are activated by GPU activity, for example with ‘cuptiActivityFlushAll’,
which instructs CUPTI to deliver a buffer containing activity records to the host.

The plot above on the right shows a comparison between the walltime for a WarpX simulation
with CUPTI initialized (dark blue) and without CUPTI (light red). For the simulation presented
here, agreement between the dark blue and light red lines indicates that using CUPTI, one incurs
only a relatively small overhead on total walltime. For a WarpX test case that is load-
imbalanced (see below), we test load balancing using CUPTI-obtained timings. The setup is

shown to the left. Before
load balancing, work is
unevenly distributed
over GPUs. After load
balancing, boxes of the
domain are redistributed
to GPUs so that work is
more evenly distributed,
decreasing the walltime.

Method
To allow for runtime-accessible kernel timing, we use CUDA
Profiling Tools Interface (CUPTI), a library which allows for active
performance monitoring of CUDA applications [3]. The CUPTI
callback scheme for timing kernel execution offers more fine-
grained information than another technique (CUDA Events)
commonly used for GPU timing (illustrated in the diagram below).
With CUDA Events, the scheme for kernel timing is as follows:

• Create events (e.g. ‘start’ and ‘stop’)

• Record stream contents into event

• Compute elapsed time between events

While it is simple to implement a CUDA Event-based timer, timing
by queuing events to separate streams does not provide easy-to-
interpret kernel timings due to asynchronous execution of kernels
across streams. An alternative method is the CUPTI timing
scheme (illustrated below). Timing with CUPTI Callback functions
consists of a few key steps:

• Register callback functions to request and deliver records

• Trigger callback functions via GPU activity

• Compute kernel execution times from activity records

A key advantage of CUPTI callback-based timing over CUDA
Events-based timing is access to individual kernel durations.

With CUPTI, registered callback functions are activated by GPU
activity, and are used to capture kernel activity records and then
deliver them to the client; kernel activity records contain start and
end timestamps for each kernel.

This research was supported by the Exascale Computing Project (17-SC-20-
SC), a joint project of the U.S. Department of Energy’s Office of Science
and National Nuclear Security Administration, responsible for delivering a

capable exascale ecosystem, including software, applications, and hardware
technology, to support the nation’s exascale computing imperative.

References
[1] A. D. Malony et al., “Parallel Performance Measurement of Heterogeneous Parallel Systems with GPUs”, ICPP (2011).

[2] S. Rennich, “CUDA C/C++ Streams and Concurrency”, https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

 (accessed 01/08/2020).

[3] NVIDIA, “API Reference Guide for CUPTI”, https://docs.nvidia.com/cuda/cupti/index.html#abstract (accessed 01/08/2020).

[4] J.-L. Vay et al., “Warp-X: A new exascale computing platform for beam–plasma simulations”, Nucl. Inst. Meth. A (2018).

[5] Zhang et al., “AMReX: A Framework for Block-Structured Adaptive Mesh Refinement”, Journal of Open Source Software (2019).

GPU

Time

Timing with CUDA Events

CPU Queue
Event

Launch
Kernels

Stream 1 Kernel
Stream 2 Kernel
Stream 3 Kernel

Start
Event

Stop
Event

Queue
Event

GPU

Time

Timing with CUPTI Callbacks

CPU Register
Callbacks

Stream 1
Stream 2
Stream 3

Callback Callback Callback

Kernel

Launch
Kernels

Kernel
Kernel

Launch
Kernels

Stream 1 Kernel
Stream 2 Kernel
Stream 3 Kernel

CPU Work

How to measure kernel time?

GPU

Time

CPU

AMReX WarpX

GPU
Time

Stream 1
Stream 2
Stream 3
Stream 4

deviceSleep

deviceSleep

deviceSleep

deviceSleep

0.95 s 0.975 s 1 s 1.025 s 1.95 s 1.075 s 1.1 s 1.125 s 1.15 s 1.175 s 1.2 s

void deviceSleep (clock_value_t sleep_cycles)

{

 clock_value_t start = clock64();

 clock_value_t cycles_elapsed;

 do { cycles_elapsed = clock64() - start; }

 while (cycles_elapsed < sleep_cycles);

}

initCuptiTrace(); // Initialize CUPTI trace;

 // enable collection of

 // kernel activity records

BL_PROFILE_VAR_START_CUPTI(var); // Clr recs

PushPX(...); // GPU work; particle push step

BL_PROFILE_VAR_STOP_CUPTI(var); // Rtn recs

 cuptiActivityFlushAll(0); // Wait for return of CUPTI records

 bfrCompleted(...); // via callback function

.
.
.

