Use of CUDA Profiling Tools Interface (CUPTI) for

Profiling Asynchronous GPU Activit =
Michael E. Rowan (mgvan@lbl qovydack R. Deslippe, Kevin N. Gott, Axel Huebl, Remi Lehe, Andrew T. I\/I¥rs ;E;:E/E‘_; E \(g \ ID

ce Berkeley National Laboratory

ASCHLE COMPUTING PROJECT

Maxence Thévenet, Jean-Luc Vay, and Weiqun Zhang — Lawrence Berkeley National Laboratory

Introduction Implementation and tests
On-the-fly performance monitoring of applications is heeded for We implement the CUPTI-based timer as a module in the Adaptive Mesh Refinement (AMR)
adaptive load balancing. For applications which employ GPU library AMReX [5]. We test the CUPTI-based timer using a simple function deviceSleep, which
acceleration, active performance monitoring is complicated by the instructs the device to be inactive (on a per-stream basis) for a chosen number of cycles. For the
possibility of concurrent kernel execution on the device, and by test shown below, we use NVIDIA Volta V100, with a peak clock frequency of 1.53 GHz, and
asynchronous kernel launches from the host [1, 2]. launch sleep kernels on four separate streams, for multiples of 1, 2, 3, and 4 x 108 cycles. The
bar plot at the bottom illustrates the (concurrent) execution of these kernels across streams; the
HOW 10 measure kernel tlme? bar plot on the right shows a comparison between the instructed (light red), and measured (dark
blue) sleep times obtained via CUPTI; close agreement between the two indicates that the
CPU ;'22}’2;2 — CUPTI measurements are accurate.
\ void deviceSleep (clock_value_t sleep_cycles) 250f“PT',”““‘“’““”“?”t AL E LS L
GPU | sz —— { 5 ool = |
Stream 3--====--===-----=--- Kernel ===s=s=-mssmenones clock_value_t start = clocké64(); ;150»
- clock_value_t cycles_elapsed; ilw
Time do { cycles_elapsed = clock64() - start; } ¢ N
while (cycles_elapsed < sleep_cycles); N
Here, we present a case study in the use of the CUPTI (CUDA }
Profiling Tools Interface) library for active performance monitoring N
of a simplified GPU kernel, and a more realistic case from the Stream 1 ==--- | devcesiesp <rememmorenes B S B
advanced electromagnetic particle-in-cell code WarpX [3, 4]. In GPU | Sers o e —— - - << << e e
the future, this implementation of performance monitoring with Steams =777
CUPTI may be used in load balancing for WarpX. Tlme
The code snippet below shows a sample of instrumented code from the particle-in-cell code
MethOd WarpX; to collect activity records via CUPTI, a ‘trace’ is initialized before CUDA is initialized.
_ _ o Trace initialization consists of two steps:
To allow for runtime-accessible kernel timing, we use CUDA e Enable collection of kernel activity records via CUPTI
Profiling Tools Intgrfage (CUPTI), a Iibrgry yvhich allows for active e Register callback functions to handle storage and delivery of kernel activity records
performance monitoring of CUDA applications [3]. The CUPTI Callback functions are activated by GPU activity, for example with ‘cuptiActivityFlushAll’,

callback scheme for timing kernel execution offers more fine-

which instructs CUPTI to deliver a buffer containing activity records to the host.
grained information than another technique (CUDA Events) 9 y

Wmmonly used for GPU timing (illustrated " J.the Filagram belc?w). initCuptiTrace(); // Initialize CUPTI trace; ;Jsa(l)”_s ls e
ith CUDA Events, the scheme for kernel timing is as follows: : No CUPT |
 Create events (e.g. ‘start’ and ‘stop’) . // enable collection of 0
s \7 = 100}
e Record stream contents into event /] kernel activity records
o Compute e|apsed time between events BL_PROFILE_VAR_START_CUPTI (var) ; /] Clr recs = |)
S _ PushPX(...); // GPU work; particle push step -
Timing with CUDA Events BL_PROFILE_VAR_STOP_CUPTI(var);) // Rtn recs obof. . .
. . 0 150 300 450 600 750 900 1050
: : Step
CPU %‘\1,2‘;‘3 Launce ?E‘\‘,g‘;f cuptiActivityFlushAll(0); // Wait for return of CUPTI records
“ \\\\N _\\N ' § bfrCompleted(...); // via callback function
N
GPU S Stat " ————— Stop The plot above on the right shows a comparison between the walltime for a WarpX simulation
Stream g~ (R T ---o- - Kernel ==~ s with CUPTI initialized (dark blue) and without CUPTI (light red). For the simulation presented
: : here, agreement between the dark blue and light red lines indicates that using CUPTI, one incurs
Time only a relatively small overhead on total walltime. For a WarpX test case that is load-
imbalanced (see below), we test load balancing using CUPTI-obtained timings. The setup is
While it is simple to implement a CUDA Event-based timer, timing | . shown to the left. Before
by queuing events to separate streams does not provide easy-to- B . P I P2 " | load balancing, work is
interpret kernel timings due to asynchronous execution of kernels | L POp Neleadbance unevenly distributed
across streams. An alternative method is the CUPTI timing o m.: 2., over GPUs. After load
scheme (illustrated below). Timing with CUPTI Callback functions ER s £ | balancing, boxes of the
consists of a few key steps: ; ol {05 2 sof / i domain are redistributed
e Register callback functions to request and deliver records Is ~ | to GPUs so that work is
o Trigger callback functions via GPU activity oo 8 UL LT R TR L TR G more evenly distributed,
o Compute kernel execution times from activity records Step decreasing the walltime.

A key advantage of CUPTI callback-based timing over CUDA
Events-based timing is access to individual kernel durations.

Timing with CUPTI Callbacks Summary and future work

e Bl 0 e Tested CUPTI-based GPU timing for simple test cases,
CPU g T -+ Callback Callback Callback . ;
(Salbacks, GKemmelss: |1 Lad GRS G as well as a more realistic use case with WarpX

e CUPTI allows for accurate timing of kernel execution.

Stl’eam1 ------------- Kernel - .

G P U Stream 2==============4d- Kernel :

Stream 3==============n=-=, Kernel

* CUPTI timing strategy will enable GPU timing and load
balancing which incorporates GPU work in realistic

Tlm e WarpX problems, for example ion acceleration via laser-
plasma interaction.
Refe ren CeS This research was supported by the Exascale Computing Project (17-SC-20-
[1] A. D. Malony et al., “Parallel Performance Measurement of Heterogeneous Parallel Systems with GPUs”, ICPP (2011). SC)’ d jOInt ’DrojeCt of the U S. Dep,ar,tmen_t of Energy’sl Office of Scignce
[2] S. Rennich, “CUDA C/C++ Streams and Concurrency”, https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf and National Nuclear Secur /ty Administr. ation, n es,oonSIble for deliver ng a
[3] l\(l?/(igﬁ,ssglz(’)l1|:/{2?§£r12£g.Guide for CUPTI”, https://docs.nvidia.com/cuda/cupti/index.html#abstract (accessed 01/08/2020). cap able exascale ecosy Stem’ incl UC.ﬁ ng softwar e, app Ii Cat.i OnS.’ and hgr dware .
5] Zhang o a. “AMPex. A Framevork for Block.Structured Adaptve Mesh Rofinement Journal of Open Source Software (2019). technology, to support the nation's exascale computing imperative.

