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Summary

The lineshapes of the D1 (22S1/2 → 22P1/2) and D2 (22S3/2 → 22P1/2) transitions in lithium

were measured using a diode laser that was frequency-stabilized to a Ti:Sapphire 1 GHz

optical frequency comb. The excitation was achieved by retroreflecting the diode laser, in

effect producing Doppler-free profiles for the center frequencies of transitions. The observed

spectra were compared to density matrix calculations to gain insight into systematic effects

including the dependence of Doppler-free profiles on power and polarization angle of the

diode. For certain transitions, the method of saturated fluorescence spectroscopy inevitably

leads to the presence of extra resonances known as crossover signals. Our preliminary data

suggest that the presence of this complicating effect may render saturated fluorescence

spectroscopy an ineffective technique for resolution of transitions whose relative separation

is on the order of the natural linewidth of Li.
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Chapter 1

Introduction to the Experiment

1.1 Motivation

For many years, atomic spectroscopy experiment has provided insight into funda-

mental physics. The field has led to a number of important discoveries, including fine and

hyperfine structure of atoms, the Stark effect, Zeeman splitting, and other developments in

the understanding of atomic structure. As precision measurement techniques and atomic

structure calculations continue to improve, the alkali metals have emerged as promising

candidates for comparison of atomic theory and experiment. With recent improvements

in three-electron atomic structure calculations, lithium (Li), in particular, has become the

focus of many research efforts. A number of calculations have yielded highly accurate pre-

dictions for Li atomic structure [1–7]. However, there are considerable discrepancies in

experimental tests of the calculations (see Fig. 1.1). Precision measurement of Li has not

yet reached an accuracy matching that of the structure calculations.

Further study of Li will provide high-precision tests of quantum electrodynamics

(QED), effects of which are incorporated into atomic structure calculations. At the present

levels of accuracy, QED plays an important role in predictions related to fine and hyperfine

1
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structure. The small uncertainties of these calculations provides motivation for precision

atomic spectroscopy experiments to achieve measurements with similar levels of accuracy.

A number of previous atomic structure measurements of Li are in disagreement. In

particular, there is a significant discrepancy in measurements of the isotope shifts of the D1

(22S1/2 → 22P1/2) and D2 (22S3/2 → 22P1/2) transitions of Li (see Fig. 1.1). In addition,

these measurements concede the presence of systematic effects. Similarly, measurements of

the fine structure splitting of the 2P state in 6,7Li are in serious disagreement. Discrepancy

among measurements of the D2 lines may have been resolved by Sansonetti et. al. [8],

who found that the D2 lineshapes varied dramatically depending on the polarization of the

laser, a result of quantum interference. However, this effect does not explain disagreement

in measurements of the D1 transitions.

Further experiments are needed to resolve the conflict surrounding prior measure-

ments of Li atomic structure. In this experiment, we aim to eventually reach levels of

accuracy of less than 5 kHz. This uncertainty would be less than those of recent atomic

structure calculations [14], [15], and [16].

1.2 Summary

In this experiment, we study the atomic structure of Li using methods of high-

precision atomic spectroscopy. More specifically, we use a method called saturated fluores-

cence spectroscopy to achieve Doppler-free resolution of the atomic lineshape. This involves

retroreflecting a laser beam across a beam of atomic Li. The systematic uncertainty in this

experiment is minimized by frequency-stabilizing the pump laser. To do this, we lock the

frequency of the diode laser to a mode of a stabilized frequency comb. The frequency comb

is a set of equally spaced colors in frequency space. The the offset frequency, the spacing
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Figure 1.1: Previous measurements and calculation of Li isotope shifts and fine structure splitting for the

D1 and D2 transitions. Red points are theory calculations, black points are experimental measurements. The

disagreement provides motivation for further study of lithium. Also, the error bars on the theory points are very

small, so the experiments should be able to match these error bars, at the least. The isotope shifts suffer from

systematic error. Points labeled with (a), (b), (c), (d), (e), (f), (g), (h), and (i) comes from Refs. [9], [10], [11],

[12], [13], [8], [14], [15], and [16], respectively.
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between modes, and the number of modes are known, then any particular mode of the comb

can be determined. Since the mode of the frequency comb can be determined and controlled,

the frequency of the stabilized pump laser can also be known to a high level of precision.

We also aim to eventually give careful consideration to systematic effects including ac Stark

shifts, Zeeman splitting, and polarization angle of the pump laser.



Chapter 2

Theory

2.1 Atomic Energy Levels

In quantum mechanics, the Schrödinger equation is used to describe the evolution

of a particle’s wave function. By solving the time-independent version, we can obtain the

energy eigenvalues that represent the energies of the stationary states. For example, we

can solve for the allowed energies of the hydrogen atom by solving the time-independent

Schrödinger equation. Though hydrogen is the only atom that admits an exact solution,

it is similar to other simple atoms, such as lithium. As a result, the hydrogen solution

serves as the basis for calculations involving more complicated atoms. In this section, the

Schrödinger equation is introduced so that it can later be used to solve for the allowed

energy levels of the hydrogen atom. Reference [17] is followed.

For a particle moving in a potential V (r, t), the Schrödinger Eqn. reads

ih̄
∂

∂t
Ψ(r, t) =

(
− h̄2

2m
∇2 + V (r, t)

)
Ψ(r, t). (2.1)

When the potential is independent of the time coordinate, the Schrödinger equation allows

5



Chapter 2: Theory 6

the solutions

Ψ(r, t) = ψ(r)e−
i
h̄
Et, (2.2)

where E is a real number and ψ(r) satisfies the eigenvalue equation

Hψ = Eψ. (2.3)

When a system’s energy is measured, the result must be one of the eigenvalues E of the

Hamiltonian operator.

2.2 Spectroscopic Notation

When referring to a particular energy state for an atom, the standard notation is

2S+1LJ , (2.4)

where S is total spin angular momentum, L is the total orbital angular momentum, and

J = L+ S is is total electronic angular momentum. To determine the allowed values for J ,

the numbers S and L are added as vectors so that the allowed values of J are

|L− S| < J < L+ S. (2.5)

Traditionally, capitalized quantum numbers are used when referring to totals (total orbital

angular momentum, total spin angular momentum, etc.) and are therefore appropriate

for multi-electron atoms. Lowercase quantum numbers refer to single-electron atoms, for

example, hydrogen.

2.3 Gross Structure

One of the fundamental features of quantum mechanics is quantization of energy.

This stands in stark contrast to ordinary experience, in which objects are allowed to assume
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energies from a continuous range of values. Nevertheless, the atomic scale is small enough

that quantum effects are significant, and indeed, atomic energy levels are quantized. The

goal of this section is to derive the allowed energy levels for a single electron atom, hydrogen.

This solution often serves as a basis for atomic spectra calculations. Here, we present the

derivation given in Ref. [17].

A hydrogen atom consists of a proton of charge +e and an electron of charge −e.

The proton and electron interact by means of a central potential given by

V (r) = − e2

4πε0r
. (2.6)

The total energy of our atom can be separated into two parts, one corresponding to the

motion of the center of mass, the other corresponding to the energy of the relative motion.

The Hamiltonian for the motion of relative energy is

H =
p2

2µ
− e2

4πε0r
, (2.7)

where p is the relative momentum and µ is the reduced mass. If we work in the center of

mass frame, then the energy of the center of mass is zero, and Schrödinger’s equation yields

(
− h̄

2

2µ
∇2 − e2

4πε0r

)
Ψ(r) = EΨ(r). (2.8)

This equation can be separated using spherical coordinates. That is, a particular solution

to the wave equation can be rewritten in the form

Ψ(r, θ, φ) = Rl(r)Yl,m(θ, φ), (2.9)

where Rl(r) is the radial part and Yl,m is a spherical harmonic. The radial part satisfies the

equation {
−h̄2

2µ

(
1

r2

d

dr

(
r2 d

dr

)
− l(l + 1)

r2

)
e2

(4πε0)r

}
Rl(r) = ERl(r). (2.10)
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This equation is simplified by the introduction of the function

ul(r) = rRl(r). (2.11)

Using this new function and Eq. 2.10, it can be shown that

d2ul
dr2

+
2µ

h̄2 (E − Veff (r))ul(r) = 0 (2.12)

where we have introduced an effective potential

Veff = − e2

4πε0r
+
l(l + 1)h̄2

2µr2
. (2.13)

To solve Eq. 2.12, we will look for solutions satisfying the boundary condition

ul(0) = 0, (2.14)

so that the wave function Ψ(r) does not blow up at the origin. Equation 2.12 can be

simplified through the introduction of the quantities

ρ =

√
−8µE

h̄2 r (2.15)

and

λ = α

√
−µc2

2E
, (2.16)

where α = e2

4πε0h̄c
is the fine structure constant. Equation 2.12 then reduces to(

d2

dρ2
− l(l + 1)

ρ2
+
λ

ρ
− 1

4

)
ul(ρ) = 0. (2.17)

By searching for solutions of the form

ul(ρ) = e
−ρ
2 ρl+1

∞∑
k=0

ckρ
k, c0 6= 0, (2.18)

it can be shown that the eigenvalues of Eq. 2.17 are integers

λ = n, n = 1, 2, . . . (2.19)
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Substituting λ = n into Eq. 2.15, solving for E, we obtain the allowed energy levels

of the hydrogen atom,

En =
e2

4πε0a0

1

n2
, n = 1, 2, 3, . . . , (2.20)

where we have assumed the mass of the proton is much greater than the mass of the electron

and set µ = me and have used a0 = 4πε0h̄
2

mee2
, the Bohr radius.

2.3.1 Isotope Shifts

The energy levels of an atom are also shifted, but not split, depending on the

isotope. The shift is caused by the finite mass of the nucleus and the nuclear charge

distribution within a finite volume. For single-electron atoms, it can be seen from Eq. 2.23

that if the atom is not assumed to be of infinite mass, then the mass of the electron is

replaced by the reduced mass µ =
memp
me+mp

, and the energy levels are shifted accordingly.

For multi-electron atoms, an effect known as “mass polarization” further shifts the energy

levels [17].

Since different atoms have different nuclear charge configurations, the electric po-

tential does not obey the 1
r law inside the nucleus, rather it depends on the particular charge

configuration. An estimate of this effect can be obtained by assuming that the charge dis-

tributes uniformly throughout a sphere of radius R = r0a
1/3. With this assumption, the

electric potential due to the nucleus is found to obey the 1/r law outside the sphere of

radius R and is found to differ inside the sphere [17]:

V (r) =


Ze2

4πε02R

(
r2

R2 − 3
)

r ≤ R

− Ze2

4πε0r
r ≥ R.

(2.21)

Applying first order perturbation theory, the energy difference between two isotopes due to
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nuclear charge distribution is found to be [17]

δE ≈ Z5e2

4πε0

4

5

R2δR

a3
µn

3R
, (2.22)

where δR is the difference between the radii of the isotopes and aµ = a0(m/µ). We can

see that the isotope shift δE is larger for atoms with greater Z. Additionally, the energy

shift is most significant for energy states with lower n. The isotope with the greater radius

assumes the higher energy value.

Lithium has two stable isotopes, 7Li and 6Li, with relative abundances of 92.41%

and 7.59% [18]. The D1 and D2 lines of 7Li are shifted up by approximately 10.5 GHz

relative to the D1 and D2 lines of 6Li. See Fig. 2.1.

2.3.2 Fine Structure

In section 2.3, the energy levels of hydrogen were shown to be

En =
e2

4πε0a0

1

n2
, n = 1, 2, 3, . . . . (2.23)

Previously, the Hamiltonian was assumed to include one term for the electron kinetic energy

and another for the Coulomb potential. However, additional corrections reveal a more

nuanced atomic structure, known as fine structure. Fine structure corrections are the result

of two additional effects, one relating to relativistic kinetic energy and another that comes

from spin-orbit interaction.

The relativistic correction is derived by substituting relativistic kinetic energy for

the classical kinetic energy in the Hamiltonian. Expanding the formula for relativistic

kinetic energy in a Taylor series, we obtain

T =
mc2√
1− v

c
2
−mc2 =

p2

2m
− p4

8m3c2
+ . . . , (2.24)
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Figure 2.1: The hyperfine splitting in the D2 line of 6Li D2 transition is on the order of 6 MHz, which is about

the natural linewidth of the transition.
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so that the first-order relativistic correction is

H ′rel = − p̂4

8m3c2
. (2.25)

The correction to the energy levels is computed by treating the correction as a perturbation

and calculating the expectation value of H ′rel. The result is [19]

E
(1)
rel = − E2

n

2mc2

[ 4n

l + 1
2

− 3
]
. (2.26)

In general, this correction is on the order of E1/(mec
2) ≈ 10−3 eV. We note that the

relativistic correction results in just a negative shift to the hydrogen energy levels. The

correction will be largest for states with small n and l.

The spin-orbit correction comes about when one considers the orbiting electron’s

frame of reference. In the electron’s frame, the proton is in orbit, which produces a magnetic

field. This results in different energies depending on the alignment of the electron’s magnetic

moment ~µ with the direction of the magnetic field ~B. The Hamiltonian equation for an

electron in a magnetic field is

H ′so = −~µ · ~B. (2.27)

To make use of this, we must find the expectation value of ~µ for a given atomic state.

In the frame of the electron, we can consider the proton, which orbits with period

T , to be a loop of current given by

I =
e

T
. (2.28)

From the Biot-Savart law, we know that the magnetic field given by a circular current is

just

B =
µ0I

2r
=
µ0e

2rT
. (2.29)

However, we also know that in the rest frame of the proton, the electron has an angular

momentum L = mrv = 2πr2m/T . Furthermore, ~L and ~B both point in the same direction,
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so we have

~B =
µ0e

4πmr3
~L. (2.30)

where ~L is the total orbital angular momentum. Writing ~B in this form will allow us to

express Eq. 2.27 in terms of ~L and ~S if we can write the electron dipole moment µ in terms

of the spin. It turns out that [19]

~µ = − e

m
~S, (2.31)

where S is the total spin angular momentum. We can provide some motivation for this

by considering the classical picture. Classically, the magnetic dipole moment of a ring is

defined as the current (I) times the area (2πr2) of the ring:

µ =
e

T
2πr2. (2.32)

If we call the angular momentum of the ring S and recall that a ring has a moment of

inertia mr2, then classically we have

S = Iω =
mr22π

T
. (2.33)

Since µ and S will be antiparallel, since the charge e is negative, this classical calculation

yields

~µ = − e

2m
~S. (2.34)

This differs from Eq. 2.31 by a factor of 2, which is explained in the relativistic theory of

the electron.

Using Eqs. 2.30 and 2.31, we can write Eq. 2.27 as

H ′so =
( e2

4πε0

) 1

m2c2r3
~L · ~S, (2.35)

where we have used c2 = 1
µ0εo

. Since the electron’s reference frame is not actually an

inertial reference frame, as the electron accelerates around the proton, Eq. 2.35 requires an
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additional correction known as “Thomas precession” [19]. This inserts a factor of 1
2 , so that

H ′so =
( e2

8πε0

) 1

m2c2r3
~S · ~L. (2.36)

This simplifies if we define the total angular momentum ~J by ~J = ~L+ ~S and consider the

identity ~L · ~S = 1
2(J2 − L2 − S2), so that the eigenvalues of a state with quantum numbers

l, s, j, and mj are

h̄2

2
[j(j + 1)− l(l + 1)− s(s+ 1)]. (2.37)

In the case of hydrogen, s = 1/2 while the expectation value of 1
r3 is [19]

〈 1

r3
〉 =

1

l(l + 1/2)(l + 1)n3a3
0

. (2.38)

In terms of the previously calculated energy levels of hydrogen, it can be shown

that the spin-orbit correction is

E(1)
so =

E2
n

mc2

{
n[j(j + 1)− l(l + 1)− 3/4]

l(l + 1/2)(l + 1)

}
. (2.39)

The numerator of Eq. 2.39 can change sign depending on the value of j. For example, if we

set j = l ± 1/2, then in the case j = l + 1/2, Eq. 2.39 reduces to

E
(1)
so,j=l+1/2 =

E2
n

mc2

{
n

(l + 1/2)(l + 1)

}
, (2.40)

which is positive. However, if j = l − 1/2, the equation reduces to

E
(1)
so,j=l−1/2 =

E2
n

mc2

{
− n(l + 1)

l(l + 1/2)(l + 1)

}
, (2.41)

which is negative. So, depending on the alignment of the spin and orbital angular mo-

mentum, the spin-orbit correction can be be positive or negative. This means that the the

energy levels are split rather than just shifted. We can also see that spin-orbit coupling lifts

the degeneracy of l and s.
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Finally, one can combine the relativistic and spin-orbit corrections to obtain the

fine-structure energy levels. To first order,

E
(1)
f−s =

E2
n

2mc2

(
3− 4n

j + 1/2

)
, (2.42)

or in terms of the fine-structure constant α,

E
(1)
fs = −13.6 eV

n2

(
1 +

α2

n2

(
n

j + 1/2
− 3

4

))
. (2.43)

It is interesting to note that even though the spin-orbital correction and relativistic correc-

tions arise from entirely different mechanisms, they are both on the order of E2
n

2mc2
.

2.4 Single-Electron vs. Multi-Electron Atoms

Up to now we have focused on the atomic structure of hydrogen, a one-electron

atom. There are several important differences between single-electron and multi-electron

atoms. One complicating factor in the latter is that electrons in outer orbitals experience

shielding from the full charge of the nucleus. As a result, electrons that spend more time

near the nucleus will be more tightly bound than those that spend more time further from

the nucleus. Due to this shielding effect, the deviation from the hydrogen energy levels is

greatest for S terms, smaller for P terms, and even smaller for D terms, etc. [20]. Indeed, the

equation for energy levels of a one-electron atom (Eq. 2.23) does not apply to multi-electron

atoms.

On the other hand, certain multi-electron atoms are similar to hydrogen, in par-

ticular the alkali atoms. These atoms consist of a filled electron shell with one orbiting

electron, which is very similar to the structure of hydrogen.

In our experiment, we are examining transitions from the ground state of lithium

to the fine-structure doublet of the first excited configuration. In the ground state (2S1/2) of
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lithium, L = 0. We can see from Eq. 2.39 that with an orbital angular momentum of zero,

the spin-orbital correction provides no contribution to the ground state energy. However,

in the first excited states, L = 1 and S = 1/2, so that the 2P state is split into two energy

levels, namely the 2P1/2 and 2P3/2 states. The 2S1/2 →2 P1/2 and 2S1/2 →2 P3/2 transitions

are commonly referred to as the “D1” and “D2” transitions, respectively. The separation

between these transitions is about 10 GHz. Figure 2.2 shows an energy level diagram for

lithium.

2.5 Hyperfine Structure

If the spectral structure of an atom is probed to a very high level of precision,

another level of splitting is observed beyond fine structure. This additional splitting is

known as hyperfine structure. The most significant contribution to hyperfine structure is

the interaction of the nuclear magnetic moment with the magnetic field at the nucleus

caused by the orbiting electron. The deviation of the nuclear charge distribution from a

spherical shape offers a smaller contribution. The energy level splittings caused by hyperfine

effects are smaller than the splittings associated with fine structure by about one to three

orders of magnitude.

Hyperfine structure is characterized by the constants AJ and BJ , known as the

magnetic dipole coupling constant and electric quadrupole coupling constant, respectively.

As their names suggest, AJ describes the splitting caused by interaction of the nuclear spin

to the magnetic field, while BJ describes the contributions from the quadrupole moment

of the nuclear charge distribution. Both AJ and BJ can be measured experimentally or

calculated.
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Figure 2.2: These lines represent the low-lying energy levels of lithium. Measurements labeled (a), (b), and

(c) come from Refs. [21], [22] and [23], respectively.
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2.5.1 Electric Dipole Interaction

Here we briefly outline the derivation of the contribution of the electric dipole

interaction to the hyperfine energy level splitting. A more complete derivation can be

found in Ref. [17].

Classically, the energy of a magnetic dipole moment in a magnetic field is given

by [24]

U = −~µ · ~B. (2.44)

The energy of the nuclear magnetic moment in the electric field caused by the orbiting

electrons can therefore be taken as a small perturbation to the Hamiltonian of the atom:

H1 = −~µI · ~Bel(0), (2.45)

where µI is the nuclear magnetic moment. Since ~µI is proportional to the intrinsic nu-

clear angular momentum, ~I, and ~Bel(0) is proportional to ~J (as all vector quantities are

proportional to angular momentum and point along the z-axis), Eq. 2.45 can be rewritten

as

H1 = AJ ~I · ~J, (2.46)

where AJ is the magnetic dipole coupling constant. As in Ref. [17], the energy splitting

contribution from the electric dipole interaction is found to be

∆Emd =
AJ
2

[F (F + 1)− I(I + 1)− J(J + 1)], (2.47)

where ~F = ~I + ~J . We see that the electric dipole interaction leads to splitting depending

I and J . Additionally, Eq. 2.47 leads to F and MF , the magnetic quantum number, being

good quantum numbers, as the degeneracy of F has been lifted.

It important to note that Eq. 2.47 ignores the effect of J-J mixing in determining

the relationship between hyperfine energy separations and the AJ coefficient. This effect
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leads to significant corrections in determining the value of AJ for the P states of alkali

metals. The corrections are particularly pronounced in 7Li. See Ref. [25] for a detailed

discussion of these corrections.

2.5.2 Electric Quadrupole Interaction

A smaller contribution to hyperfine structure arises from the nuclear charge distri-

bution. Here we present the energy shifts caused by this effect. A derivation of this result

can be found in Refs. [26].

The effect of the electric quadrupole coupling on energy levels can be determined

by considering the electrostatic interaction given by

H2 = −
∑
p

e2

4πε0|~re − ~rp|
, (2.48)

where ~re and ~rp are the positions of an electron and proton, respectively, relative to the

center of mass of the nucleus, and where the sum is taken over the positions of all of the

protons. The finite nuclear charge distribution is accounted for by assuming re > rp. Then

Eq. 2.48 can be expanded in powers of rp/re, which yields a series of electric moments.

The first term is the electric monopole moment. When it is summed over all protons and

electrons, it gives the usual Coulomb interaction from a point-like nuclues. The second term

in the series is the dipole term and from parity and time-reversal symmetry arguments, it

can be shown that it is equal to zero. The next term is the electric quadrupole interaction.

Following the usual multipole expansion, Eq. 2.48 can be written as

H2 =
1

4πε0

∑
q

(−1)qQ−q2 (n)F q2 (e), (2.49)

where Qq2 and F q2 denote the nuclear electric quadrupole tensor and electric field gradi-

ent tensor, respectively. Equation 2.49 can be simplified by defining the nuclear electric
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quadrupole moment Q as

Q =
2

e

〈
I,MI |

∑
j

Q0
2(pj)|I,MI = I

〉
, (2.50)

where the sum is taken over all protons, and by writing the average of the gradient of the

electric field as 〈
∂2Ve
∂z2

〉
=

1

2πε0

〈
J,MJ = J

∣∣∑
i

F 0
2 (ei)

∣∣J,MJ = J
〉
, (2.51)

where the sum is over all electrons. With these introduced definitions, Eq. 2.49 takes the

simplified form

H2 =
BJ

2I(2I − 1)J(2J − 1)
(3(~I · ~J)2 +

3

2
(~I · ~J)− I(I + 1)J(J + 1)). (2.52)

The expectation value of the perturbing quadrupole Hamiltonian is shown to be [26]

∆Eeq =
BJ

8I(2I − 1)J(2J − 1)
(3K(K + 1)− (4I(I + 1)J(J + 1)), (2.53)

where

K = F (F + 1)− I(I + 1)− J(J + 1) (2.54)

and

BJ = eQ

〈
∂2Ve
∂z2

〉
(2.55)

is the electric quadrupole hyperfine coefficient. The total energy of any hyperfine state is

therefore given by

Ehf = Ecog + ∆Emd + ∆Eeq

= Ecog +AJ
K

2
+BJ

3K(K + 1)− 4I(I + 1)J(J + 1)

8I(2I − 1)J(2J − 1)
,

(2.56)

where EJ is the center-of-gravity energy. Equation 2.56 allows us to see that in order for

BJ to be nonzero, we must have I ≥ 1 and J ≥ 1.
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In general, hyperfine corrections range from about one to three orders of magnitude

smaller than those associated with fine structure. For less massive atoms, it can be difficult

to resolve hyperfine structure for the P and D states because the natural linewidths of

transitions can be comparable to hyperfine splitting. This is true of the D2 transition in

lithium, which has a natural linewidth of about 6 MHz [27]. As shown in figure 2.1, the

hyperfine splitting of the D2 transition is comparable to 6 MHz.

2.6 Energy Shifts and Splitting

The energy levels of an atom can be shifted and split in a number of different ways.

For example, an external magnetic field will split the energy levels of an atom and a time-

varying electric field will both split and shift energy levels. When performing high-precision

measurements, as we are in this experiment, it is necessary to account for any effects that

could shift the energy levels, so it is necessary to understand ac-Stark shifts and Zeeman

splitting. In this section we discuss these two phenomena and provide an estimate of the

ac-Stark shifts for this experiment.

2.6.1 Zeeman Splitting

When atoms are subject to an external magnetic field, the magnetic sublevels are

split. This is known as the “Zeeman effect,” and occurs because of the extra energy acquired

by the atomic magnetic moment in the dc magnetic field. If the magnetic field is small, on

the order of 10−3 T, then it can be regarded as a small perturbation,

H1 = −µ · ~B. (2.57)

As shown in Ref. [26], the energy shift due to this perturbation is

∆E = 〈γL S J MJ| − µ · ~B|γL S J MJ〉 = gJµBBMJ , (2.58)
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where gJ is the Landé g-factor given by

gJ = gl

(
J(J + 1) + L(L+ 1)− S(S + 1)

2J(J + 1)

)
+gs

(
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)

)
.

(2.59)

Since gl = 1 and gs ≈ 2.0023 [28], we can make the approximation that gs ≈ 2gl. Then

gJ ≈
3J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (2.60)

If the applied field is weak enough that the energy shift is less than the natural linewidth

of the transition, then the lineshape is broadened [29].

2.6.2 ac-Stark Shift

When an atom is present in a time-varying external electric field, its energy lev-

els will be split and shifted. This is known as the ac-Stark effect. Second-order time-

independent perturbation theory is one method that can be used to arrive at the energy

shifts. However, if we eschew the use of second-order time-independent perturbation theory,

we can still arrive at approximately the same result by using the rotating wave approxima-

tion. In this section, we follow the derivation found in ref. [27].

Suppose we have an atom with two states, |a〉 and |b〉, with an energy separation

of h̄ω0. The atom is subjected to a time-varying electric field ε0 sin(ωmt). We can treat the

effect of the electric field as a weak perturbation so that the Hamiltonian of the system is

H =

 0 −dε0 sin(ωmt)

−dε0 sin(ωmt) h̄ω0

 . (2.61)

Beginning with the time-dependent Schrödinger equation, we have

H|ψ〉 = ıh̄
∂

∂t
|ψ〉. (2.62)
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We can then perform a unitary transformation by using the operator

U =

 1 0

0 e−ıωmt

 , (2.63)

which yields

U †HUU †|ψ〉 = ıh̄U †
∂

∂t
UU †|ψ〉,(

U †HU − ıh̄U †∂U
∂t

)
U †|ψ〉 = ıh̄

∂

∂t
U †|ψ〉.

(2.64)

Since the states are transformed as

|ψ′〉 = U †|ψ〉, (2.65)

we extract the “effective Hamiltonian,” given by

H̃ = U †HU − ıh̄U †∂U
∂t
. (2.66)

Plugging in the system Hamiltonian H, the effective Hamiltonian can be written explicitly

as

H̃ =

 0 −dε0
2ı (1− e−2ıωmt)

dε0
2ı (1− e2ıωmt) h̄ω0

+

 0 0

0 −h̄ωm

 . (2.67)

At this point, we invoke the rotating wave approximation, so that all quickly oscillating

terms in the Hamiltonian drop out, i.e. e2ıωmt goes to zero. In this case, our effective

Hamiltonian reduces to

H̃ ≈

 0 −dε0
2ı

dε0
2ı h̄ω0 − h̄ωm

 . (2.68)

This resembles a Hamiltonian corresponding to a dc Stark shift for a two level system with

an energy separation of h̄(ω0 − ωm) in an applied electric field with magnitude ε0
2 . In the

case of dc Stark shifts, energy level shifts are governed by

∆E =
∑
i

d2
ikε

2

Ek − Ei
, (2.69)
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therefore the ac Stark shifts in our model atom are given by

∆E ≈ ± d2ε2
0

4h̄(ω0 − ωm)
. (2.70)

It is important to note that this approximation is only valid in the near-resonant case, when

ωm ≈ ω0. This is because we have neglected the finite linewidth of the transition.

2.7 Interaction of Atoms with Electromagnetic Radiation

The two basic ways by which photons interact with matter are absorption and

emission. Here we present brief descriptions of these fundamental processes, as well as

introduce the Wigner-Eckart theorem and relative transition amplitudes.

2.7.1 Absorption

When an atom interacts with a photon, there is some probability that it will absorb

that photon and transition from a lower to a higher energy level. For this to occur, the

energy of the photon must be equal to the difference in energy between the two states. The

transition rate for absorption is proportional to the intensity of the radiation.

2.7.2 Spontaneous Emission

The complementary process of absorption is spontaneous emission, spontaneous

meaning that the emission is not triggered by any external factor. If an atom is initially

in an excited state and no radiation is present, then eventually it will naturally decay to a

lower energy state and emit a photon.

In this experiment, the fluorescence we detect is produced by spontaneous emission.

The average time that it takes for an atom to naturally decay from an excited state to a

lower energy state is called the average lifetime of the transition. As a consequence of
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the Heisenberg uncertainty principle, this results in an uncertainty in the energy of the

transition given by

∆E∆T ≈ h̄

2
. (2.71)

This shows that the finite lifetime of a transition results in broadening of the spectral

lineshape. The natural linewidth, often denoted by Γ, of a transition is extracted from

this uncertainty in energy and describes the size of the broadening. In lithium, the average

lifetime of the D1 and D2 transitions is ∼ 27 ns and the natural linewidth is ∼ 6 MHz [27].

2.7.3 Stimulated Emission

An incident photon can also cause an atom to drop from an excited state to a

lower energy state. Under the influence of electromagnetic radiation, an atom has some

probability to emit a photon with the same energy, direction and phase as the incident

photon. As shown in Ref. [17], the rate of stimulated emission is equal to that of absorption.

However, if population inversion occurs, that is if the system has more atoms in the excited

state than in a lower energy state, then emission becomes the dominant process. This result

is the basis for lasers and masers. A detailed discussion of lasers and masers can be found

in Ref. [17].

2.7.4 The Wigner-Eckart Theorem

Many calculations in atomic physics involve the evaluation of matrix elements of

tensor operators with respect to an angular momentum basis. These calculations can be

simplified through application of the Wigner-Eckart theorem, which states that the matrix

elements of an irreducible tensor operator T κq (where κ is the rank of the tensor and the

polarization q = −κ,−κ + 1, ..., κ) with respect to general angular momentum eigenstates
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are given by [30]

〈γ′, F ′,M ′F |T κq |γ, F,MF 〉 = (−1)F
′−M ′F 〈γ′, F ′||Tκ||γF 〉

 F ′ κ F

−M ′F q MF

 , (2.72)

where the reduced matrix element 〈γ′, F ′||Tκ||γF 〉 is independent of MF , M ′F , and q, and is

a property of the physical observable under consideration. The term in parentheses is a 3-j

symbol. The 3-j symbol can be defined as the product of a Clebsch-Gordan coefficient and

other numerical factors, and it obeys a number of symmetry relations [31]. For example,

the 3-j symbol in Eq. 2.72 can be written as F ′ κ F

−M ′F q MF

 = (−1)M
′
F−F

′ 〈F,MF , κ, q|F ′,M ′F 〉√
2F ′ + 1

. (2.73)

This factor is determined by geometry and depends only on the orientation of the system

relative to the z-axis.

To use the Wigner-Eckart theorem, the tensor operator must be expressed as an

irreducible spherical tensor. As an example, we’ll consider the dipole moment operator, ~d.

In Cartesian coordinates, the dipole operator is written as

~d = dxx̂+ dyŷ + dz ẑ. (2.74)

This can be represented in the spherical basis defined by

ê1 = − 1√
2

(x̂+ iŷ),

ê0 = ẑ,

ê−1 =
1√
2

(x̂− iŷ),

(2.75)

which yields

d1 = − 1√
2

(dx + idy),

d0 = dz,

d−1 =
1√
2

(dx − idy).

(2.76)
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Quantum Number Description

L Orbital angular momentum
S Spin angular momentum
I Nuclear spin

J Total angular momentum, ~J = ~L+ ~S

F Defined by ~F = ~I + ~J
MF Magnetic quantum number

Table 2.1: Descriptions of various quantum numbers which, when paired with any other numbers needed to

specify the state, form a coupled basis. The addition by which ~F and ~J are defined is an addition of vectors.

This means that J and F take on integral values ranging from |L−S| to |L+S| and |I−J | to |I+J |, respectively.

These are the components of an irreducible tensor operator with rank κ = 1 and for which

q = −1, 0, 1, respectively [27]. The dipole operator is now expressed as an irreducible tensor

operator. As we shall see in the next section, the Wigner-Eckart theorem can be applied

to write the matrix elements of ~d, expressed in some general angular momentum bases, as

a product of reduced matrix elements and the Clebsch-Gordan coefficient.

2.7.5 Relative Transition Amplitudes

Different quantum numbers can be used to describe an atomic state. If appro-

priately chosen, the quantum numbers form a basis in which any atomic state can be

represented. One basis, the coupled basis, uses the numbers L, S, I, J, F,MF , and any other

necessary quantum numbers, collectively referred to as γ, to specify an atomic state. These

quantum numbers are summarized in table 2.1.

Suppose we have an initial state specified by |i〉 = |γLSIJFMF 〉 and a final

state specified by |f〉 = |γ′L′S′I ′J ′F ′M ′F 〉. The overall transition rate from |i〉 to |f〉 is

determined by the full matrix element 〈γ′L′S′I ′J ′F ′M ′F |dq|γLSIJFMF 〉, where dq is the

irreducible rank 1 tensor operator defined by Eqs. 2.76, and can be related to the reduced
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matrix element through the Wigner-Eckart theorem. Invoking the theorem yields

〈γ′L′S′I ′J ′F ′M ′F |dq|γLSIJFMF 〉 = (−1)F−MF 〈γ′L′S′I ′J ′F ′||d||γLSIJF 〉

×

 F ′ 1 F

−M ′F q MF

 .

(2.77)

The reduced matrix elements on the righthand side of Eq. 2.77 can be written in terms of

the uncoupled |γ, L〉 basis. Since the interaction Hamiltonian doesn’t depend on I, we can

relate reduced matrix elements in F to reduced matrix elements in J by decoupling I and

J and using the uncoupled basis [30]:

〈γ′L′S′I ′J ′F ′||d||γLSIJF 〉 = (−1)J+I+F+1 〈γ′L′S′J ′||d||γLSJ〉

×
√

(2F + 1)(2F ′ + 1)


J ′ F ′ I

F J 1

 ,

(2.78)

where the term in curly braces is a “Wigner 6-j symbol1.” We can use this tactic again to

relate reduced matrix elements in J to reduced matrix elements in L by decoupling L and

S, and the result is

〈γ′L′S′I ′J ′F ′||d||γLSIJF 〉 = (−1)2+L′+S′+2J+I+F 〈γ′L′||d||γL〉

×
√

(2F + 1)(2F ′ + 1)(2J + 1)(2J ′ + 1)

×


J ′ F ′ I

F J 1




L′ J ′ S′

J L 1

 .

(2.79)

Since the reduced matrix element 〈γ′L′||d||γL〉 is the same for all hyperfine sublevels and

fine structure levels of the D1 and D2 transitions for lithium, the transition rate Wif , for a

1The Wigner 6-j symbols are real numbers that possess a number of symmetry properties. For example,
they are invariant under any permutations of the columns and are invariant under interchange of the upper
and lower rows [32]. A more detailed discussion of Wigner 6-j symbols can be found in Ref. [30].
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given polarization q, from state |i〉 to state |f〉 satisfies

Wif ∝ (2F + 1)(2F ′ + 1)(2J + 1)(2J ′ + 1)

×


J ′ F ′ I

F J 1


2

L′ J ′ S′

J L 1


2 F ′ 1 F

−M ′F q MF


2

,

(2.80)

Equation 2.80 can be used to calculate the relative probabilities of different transitions. If

an ensemble of atoms obeying Boltzmann statistics is being considered then the ground

states will all be equally populated. This causes the atoms to fill the F states according to

the number of MF states and therefore changes the relative strength of the transition. This

can be accounted for by multiplying Eq. 2.80 by 2F + 1.

This example shows the power of the Wigner-Eckart theorem. It allowed us to

express the the matrix elements of an irreducible tensor operator as a product of real

coefficients (the 3-j symbol and phase factor) and a reduced matrix element that depends

on the dipole operator. By decoupling I and J , and then L and S, we were able to further

simplify the reduced matrix elements. These steps have converted a complicated problem

into a trivial calculation. In this case, the reduced matrix elements can actually be looked

up in a table, for example in Ref. [27].

2.8 Doppler Shift

Consider laser light propagating in the ~k direction. Now suppose a beam of atoms

is directed to intersect with the laser perpendicular to ~k. This is a typical setup in atomic

spectroscopy experiments. If the atoms travel perfectly perpendicular to the laser beam,

then all of the atoms will observe the same frequency for the laser light. However, it is

typically not true that all of the atoms will intersect perfectly perpendicular to the beam,

that is the beam will not be perfectly collimated. Any mechanism that produces an atomic
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beam will usually result in some angular spread of the atoms as they travel away from the

source. The atoms will assume a range of velocities vt transverse to the ideal direction of

the atomic beam. As a result, the frequencies observed by these atoms are Doppler shifted

according to

ν = ν0

(
1 +

v

c

)
. (2.81)

In this experiment, an atomic beam is directed perpendicular to a probe laser beam. How-

ever, as the atoms travel across the width of the laser beam, they spread out along the di-

rection parallel to the propagation direction of the laser. As a result, they observe Doppler

shifted frequencies of the laser light. Since the natural linewidth of the D1 and D2 tran-

sitions in lithium are less than the Doppler shifts (see Secs. 2.7.2 and 6.4.3), reducing the

effects of Doppler broadening leads to increased resolution of the transitions.

2.9 Retroreflection

In an attempt to further decrease the effects of the Doppler width, the laser beam

is retroreflected. When the laser frequency is not exactly on resonance (figure 2.3b), atoms

from separate velocity classes will, due to Doppler shifts, will observe the same frequencies

of light. As a result, two velocity classes will contribute to the fluorescence spectrum when

the laser is slightly detuned from the atomic transition. On the other hand, when the laser is

resonant with the transition (figure 2.3a), only atoms that travel perpendicular to the laser

will contribute to the spectral lineshape. In the resonant case, there will be fewer atoms

contributing to the fluorescence signal. This is reflected as a small dip in the lineshape. See

figure 2.4.

The technique of retroreflection aids in compensating for Doppler broadening as

it allows for greater resolution of atomic transitions.
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(a) When the laser is on resonance, one veloc-
ity class is excited.

(b) When the laser is off resonance, multiple
velocity classes are excited.

Figure 2.3: When the laser is slightly detuned from the transition frequency (figure 2.3b), two separate

transverse velocity classes will contribute to the fluorescence signal. When the laser is on resonance (figure

2.3a), only the zero transverse velocity class contributes. This results in a small dip in the spectral lineshape.

Figure 2.4: This sample lineshape shows a saturated fluorescence dip that appears in a calculated spectrum

for a two-level system. The code used to produce this spectrum can be found in appendix 1.
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2.10 The Density Matrix

In this section, we introduce the density matrix. This is a tool that is useful in

modeling statistical ensembles of quantum systems, for example, atoms. In this work, the

density matrix is used to calculate the spectral lineshape of lithium.

2.10.1 A Generalized Wave Function

The wave function is limited in the types of ensembles that it can describe. An

ensemble of quantum systems, such as a group of atoms, can be characterized by a single

wave function only if the ensemble is completely coherent. However, if the ensemble consists

of quantum systems that do not share the same phase relationship, then any description

that uses a single wave function is rendered ineffective.

The density matrix is a generalization of the wave function that enables one to

describe ensembles that cannot be characterized by a single wave function. It can be used

to describe populations that are incoherent, or partially coherent. Just as the Schrödinger

equation is used to determine the time evolution of single atoms or pure ensembles, the

Liouville equation governs the temporal development of mixed ensembles. Furthermore,

the time evolution of the density matrix can be modified to include terms that account for

“relaxation” and “repopulation,” or in other words, the interaction of the ensemble with

the environment. Some mechanisms that cause relaxation are collisions between atoms and

radiative decay of atoms in excited states. Processes that lead to repopulation include the

entrance of atoms into the interaction region and optical pumping. The density matrix is

therefore very useful in modeling atomic physics experiments, in which the subject of study

is often an ensemble of (not necessarily coherent) atoms.

In the present experiment, we use the density matrix to model the time evolution

of the population of lithium atoms entering and exiting the interaction region. By varying
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phenomenological terms in the time evolution of our density matrix, the effects of polar-

ization angle, optical pumping, and external electric and magnetic fields can be further

understood. This allows for a more thorough understanding of the observed spectra.

In the subsequent sections, we follow derivations presented in Ref. [32].

2.10.2 The Density Operator and Matrix

Suppose we have an ensemble containing N quantum systems. If we perform a

measurement, then there is some observable A that represents the measurement. The value

of the measurement is the expectation value of A averaged over the N atoms in the ensemble.

We can write this as

〈A〉 =
1

N

N∑
i=1

〈ψi|A|ψi〉 . (2.82)

We can insert the identity operator

Î =
∑
j

|φj〉 〈φj | , (2.83)

where {|φj〉} is any complete set of basis vectors, into the above equation to obtain

〈A〉 =
∑
j

1

N

N∑
i=1

〈ψi|A|φj〉 〈φj |ψi〉

=
∑
j

1

N

N∑
i=1

〈φj |ψi〉 〈ψi|A|φj〉

=
∑
j

〈φj |
1

N

N∑
i=1

|ψi〉 〈ψi|A|φj〉 .

(2.84)

Applying the definition of the trace of an operator,

Tr(B) =
∑
j

Bjj =
∑
j

〈φj |B|φj〉 , (2.85)

we obtain

〈A〉 = Tr

(
1

N

N∑
i=1

|ψi〉 〈ψi|A

)
. (2.86)
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If we define the density matrix to be

ρ =
1

N

N∑
i=1

|ψi〉 〈ψi| , (2.87)

then Eq. 2.84 condenses to

〈A〉 = Tr(ρA). (2.88)

The elements of the density operator form the density matrix. The entries in the

density matrix are given by

ρij = 〈φj |ρ|φk〉 =
1

N

N∑
i=1

〈φj |ψi〉 〈ψi|φk〉 =
1

N

N∑
i=1

c
(i)
j c

(i)∗
k , (2.89)

where c
(i)
j and c

(i)
k are the jth and kth expansion coefficients of state ψi. The off-diagonal

(j 6= k) elements represent the coherence between states φj and φk. On the diagonals

(j = k) of the density matrix, we have

ρjj =
1

N

N∑
i=1

|c(i)
j |

2, (2.90)

and accordingly, these entries represent the average probability of finding one of the quantum

systems in the state φj , which is a state held by a population.

2.10.3 The Liouville Equation

Just as the Schrödinger equation can be used to describe the time evolution of

a single atom or an ensemble of coherent atoms, the Liouville equation, coupled with the

initial conditions of the ensemble and the environment, determines the evolution of the

density matrix. Let us begin by explicitly computing the time derivative of the density

matrix:

ih̄
d

dt
ρ = ih̄

1

N

N∑
i=1

d

dt
|ψi〉 〈ψi|

=
1

N

N∑
i=1

((
ih̄
d

dt
|ψi〉

)
〈ψi|+ |ψi〉

(
ih̄
d

dt
〈ψi|

))
.

(2.91)
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At this point, we may apply the Schrodinger equation

ih̄
d

dt
|ψi〉 = Hψi (2.92)

to obtain

ih̄
d

dt
ρ =

1

N

N∑
i=1

(H |ψi〉 〈ψi| − |ψi〉 〈ψi|H) , (2.93)

but this is just the commutator of H and ρ, so we have

ih̄
d

dt
ρ = [H, ρ]. (2.94)

This is known as the Liouville equation, and it is used to determine how the density ma-

trix evolves in time. The time evolution is determined solely by the initial conditions of

the system. Terms that account for interactions with the environment are built into the

Hamiltonian.

2.10.4 Relaxation

The Liouville equation (Eq. 2.94) describes the time evolution of quantum systems,

e.g., atoms, whose only interactions are described by the Hamiltonian. This is a simplifying

assumption that significantly limits the Liouville equation’s utility in describing atomic

physics experiments. Atoms in a vacuum chamber can collide with each other and with the

walls of the vacuum chamber. Even when collisions are ignored, atoms interact with the

quantum vacuum by spontaneously emitting radiation, thereby decaying to a lower energy

state. These interactions, collision and emission, are “relaxation processes” because they

bring the system, the ensemble of atoms, back towards thermal equilibrium.

Relaxation processes can be reflected in the Liouville equation by including addi-

tional terms. Here, we present a short derivation of the relaxation term, following Ref. [32].

Atoms that are initially in an exited state will spontaneously decay. Though the

mechanisms of relaxation vary, the net effect of spontaneous decay of an atomic state |φj〉
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can be represented by subtracting a term from the right-hand side of Eq. 2.94. If the decay

is assumed to be exponential at a rate of Γj/2, then the relaxation of this population of

atoms can be described as

d

dt
ρjj = −Γjρjj , (2.95)

which means that the average probability of finding an atom in state |φj〉 decreases expo-

nentially. Relaxation also affects the coherences. The rate of change of a coherence is just

the average of the decay rate for each state:

d

dt
ρij = −(Γi + Γj)

2
ρij , i 6= j. (2.96)

If we introduce a relaxation matrix Γ, whose elements are defined by Eqs. 2.95

and 2.96, then a compact relaxation term can be included on the right-hand side of the

Liouville equation:

ih̄
d

dt
ρ = [H, ρ]− ih̄1

2
(Γρ+ ρΓ). (2.97)

To account for different mechanisms of relaxation, the decay rates in the relaxation

matrix can include separate terms corresponding to each relaxation process.

2.10.5 Repopulation

As a complement to relaxation, repopulation processes describe the filling of states

of the system. States can be filled by transfer of populations from one state to another. For

example, when atoms undergo radiative decay from one state to a lower energy state, the

lower state is repopulated. Repopulation also occurs when “new” atoms are introduced to

the system. One mechanism for the introduction of atoms to the system is the entrance of

atoms into the interaction region of the laser and the atomic beam. Of course, as atoms

enter the interaction region, other atoms leave, and so the number of atoms in the system

remains roughly the same.
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Repopulation is incorporated into the Liouville equation in a way similar to that

of relaxation. For example, if the repopulation term describes unpolarized atoms that enter

the interaction region, then the introduced atoms will be equally likely to repopulate any

of the ground state sublevels. If there are n ground state sublevels and the transit rate of

the atomic beam is γ, then we can define a repopulation matrix Λ that has ground state

terms of γ
n and is zero everywhere else. Like the relaxation term, the repopulation term is

also added to the right-hand side of the Liouville equation:

ih̄
d

dt
ρ = [H, ρ] + ih̄Λ. (2.98)

There are many mechanisms of repopulation, and accordingly, there are a variety of repop-

ulation terms that could be added to the right-hand side of the Liouville equation.

2.10.6 Steady State Solutions

The steady state solution of a system is determined by specifying that dρ
dt = 0, so

that the solution is constant in time. If we use representative relaxation and repopulation

terms −ih̄1
2(Γρ+ ρΓ) and ih̄Λ, then solutions to the equation

ih̄
d

dt
ρ = [H, ρ]− ih̄1

2
(Γρ+ ρΓ) + ih̄Λ = 0 (2.99)

are the steady state solutions of the system.

2.10.7 The Fluorescence Operator

In this experiment, we detect the fluorescence produced by atoms that decay from

excited states to lower states by spontaneous emission. To see how this phenomenon is built

into density matrix calculations, we consider a density matrix in an excited state ρmn; it

will decay by spontaneous emission to a lower state ρij . In this case, the rate of change of
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the lower state is given by2 [32]

ρ̇ij =
∑
m,n

4

3

ω3
ni

h̄c3
~dim · ~dnjρmn =

∑
m,n

Fmnij ρmn, (2.100)

where we have introduced the fluorescence operator

Fmnij =
4

3

ω3
ni

h̄c3
~dim · ~dnj . (2.101)

Summing over upper indices, we obtain

ρ̇ = TrρF. (2.102)

We can understand the components of Eq. 2.100 qualitatively. Classically, an

oscillating dipole moment, ~d(t) = ~d sin ωt emits radiation at a rate given by

I =
2ω4

3c3
~d · ~d. (2.103)

We can divide the righthand side of this equation by the energy of a photon, h̄ω, to find

the rate per photon:

2ω3

3h̄c3
~d · ~d. (2.104)

This equation is similar in form to Eq. 2.100, which can be considered the quantum me-

chanical analog.

2.10.8 Counterpropagation

As noted in Sec. 2.9, we retroreflect the beam to perform saturated fluorescence

spectroscopy. This is an important effect that can be built into density matrix calculations.

As an example, we consider a two level system given by states

|a〉 =

1

0

 and |b〉 =

0

1

 . (2.105)

2CGS units are being used in Eq. 2.100 and through the rest of this subsection.
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For a light wave propagating in the positive x direction, the electric field as a function of

position and time is given by

E(x, t) = ε0e
i(kx−ωt). (2.106)

If the beam is retroreflected, then the electric field becomes a superposition of the wave

propagating in the positive x direction and one propagating in the opposite direction, so

that

E(x, t) = ε0e
i(kx−ωt) + ε0e

i(−kx−ωt)

= ε0e
−iωt

(
eikx + e−ikx

)
= ε0e

−iωt(2 cos(kx)).

(2.107)

As the spatial portion of Eq. 2.107 is time independent, this is the equation of a standing

wave.

Since there is generally some divergence to atomic beams, the standing wave pic-

ture does not hold for all of the atoms. Since the atomic beam is not perfectly collimated,

atoms from different areas of the beam will have different velocities relative to the direction

of propagation of the laser. The atoms’ velocities parallel to the laser, vx, are described by

a Doppler distribution centered at vx = 0. As a result, only the atoms that travel perfectly

perpendicular to the laser will interact with a stationary electric field. The electric field

experienced by an atom with velocity vx along the direction of the laser beam propagation

is then

E(vx, t) = ε0e
−iωt cos(k(vxt+ x0))

= ε0e
−iωt cos(kvxt+ φ).

(2.108)

The Hamiltonian for the two level system subject to this external field can then

be constructed as

H =

 0 dε0e
−iωt2 cos(kvxt+ φ)

dε0e
−iωt2 cos(kvxt+ φ) h̄ω0

 . (2.109)
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To calculate the spectrum resulting from a two-level system interacting with a

counterpropagating beam, the Liouville equation (Eq. 2.94) must be solved using the above

Hamiltonian. Solutions must be calculated for different values of vx, and additionally,

they must be averaged over various phases ranging from 0 to 2π so that solutions do not

preferentially select a particular phase.
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Experimental Setup

In this chapter, we present the important information about the components of

this precision measurement experiment. In particular, the frequency comb, diode laser,

vacuum chamber, lithium oven, and data collection procedures are discussed.

A diagram of the experimental setup is shown in Fig. 3.1. The frequency of the

diode laser is stabilized to a particular mode of the comb. The laser light is coupled into

a single-mode fiber, to give the beam a Gaussian profile, and then retroreflected across the

atomic beam. The frequency of the rf signal generator that controls the repetition rate of

the comb is adjusted, and thus the frequency of the diode laser. Since we know f0, fr, and

fb to a high level of precision, we can easily determine the absolute frequency of the diode

laser is controlled.

3.1 Frequency Comb

In this experiment, we used an optical frequency comb to stabilize the frequency of

our diode laser. In the frequency space picture, as shown in Fig. 3.2, the optical frequency

comb is a set of equidistantly spaced spectral lines. The frequencies present in a frequency

41
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Figure 3.1: Our experimental setup. The diode laser is frequency stabilized and retroreflected through the

atomic beam.

comb are determined by the offset frequency, f0, the mode number, n, and the repetition

rate, frep. Mathematically, the relationship is known as the comb equation:

ν = f0 + nfrep. (3.1)

The frequency comb is produced using a Ti:Sapphire laser. The frequency comb contains

∼ 4× 105 modes with a spacing of ∼ 950 MHz [33].

3.1.1 Ti:Sapphire Oscillator

A titanium-doped sapphire crystal with an absorption coefficient of α = 6.56 at

514 nm acts as the gain medium. To control the temperature of the crystal, it is mounted in

a piece of copper that is connected to a solid-state temperature control unit manufactured

by ThermoTek. The circulating water is kept at ∼ 20◦ C.
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Figure 3.2: In the frequency domain, the frequency comb is a collection of evenly spaced frequencies. Any

frequency in the comb is given by f = f0 + nfrep.

The Ti:Sapphire crystal is pumped with a frequency-doubled ND:YV04 ‘Verdi’

laser operating at 532 nm, and it is manufactured by Coherent. Typical operating powers

run from 5.0 to 5.5 W.

The setup for our frequency comb is similar to the “Standard Ti:Sapphire” res-

onators discussed in Ref. [34]. The cavity, or “optical resonator,” is arranged in a bowtie

configuration, as displayed in Fig. 3.3. It consists of four mirrors, a lens and a crystal. The

effective cavity length is ∼ 30 cm, which translates to a repetition rate of ∼ 950 GHz, or

about ∼ 1 ns between pulses. The output coupling (OC) mirror is 99% reflective, while

mirrors M1, M2 and M3 are chirped to compensate for group velocity dispersion. Mirrors

M1 and M2 are curved mirrors with radii of curvature equal to 3 cm. The two mirrors have

group velocity dispersion (GVD) of −70 fs2, and work together as a dispersion-compensated

pair. Mirror M3 is a plane mirror with a GVD of −40 fs2. Mirror M3 is attached to a piezo

ceramic element. By adjusting the voltage to the piezo ceramic, the cavity length can be

controlled, which allows for fine adjustments of the repetition rate. Mirror M2 is mounted

on a micrometer translation stage, allowing for alignment of the cavity. The resonator is

housed in a 10 cm × 20 cm × 30 cm box, as pictured in Fig. 3.4.

A number of parameters can be adjusted to achieve lasing and mode-locking. In

particular, the angles and positions of the mirrors, the pump power, crystal position, and
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Figure 3.3: The optical resonator is arranged in a bowtie configuration. The crystal, pictured in purple, is

located between mirrors M1 and M2. Mirrors M1, M2 and M3 are chirped to compensate for group velocity

dispersion. The output coupling (OC) mirror is 99% reflective. The length of the cavity, that is the total distance

covered by the laser in one round trip of the cavity, is ∼ 30 cm. Picture from Ref. [35].

Figure 3.4: The resonator is housed in a 10 cm × 20 cm × 30 cm box. The ‘Verdi’ pump laser can be seen

behind the resonator housing.
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crystal angle can all be varied (see Fig. 3.3). Once alignment of the optical elements has

achieved lasing within the cavity, the position of M2 is adjusted by use of a translation stage

to produce conditions that are conducive to mode-locking. To accomplish mode-locking,

an external perturbation must be introduced in order to disrupt the stability of the beam

propagating within the cavity. This is is done by gently tapping mirror M2 with the handle

of a screwdriver.

Once mode-locked, the pulses can travel in only one direction, though the direction

of propagation is arbitrary. There are a few tactics that can be used to determine whether

mode-locking has been achieved. One is to observe whether one or two spots are output by

the cavity. When the laser operated in CW mode, the crystal emits light in both directions,

but when when mode-locked, light propagates in only one direction, so the presence of only

one spot indicates that mode-locking has been achieved. The visual appearance of the beam

also changes depending on whether it is mode-locked. When in CW operation, the beam

has a granular, speckled quality, an interference effect resulting from the spatially coherent

laser light and small variations in path length difference caused by the roughness of the

surface reflecting the light. When mode-locked, the spot has a dull quality. Depending

on the desired mode, the alignment is adjusted until the the laser is mode-locking in the

correct direction. The output power of the laser is ∼ 550 mW when mode-locked.

Stabilization and detection of the offset frequency requires that the comb spans

an optical octave, meaning that the frequency of the highest mode must be greater than

twice the frequency of the lowest mode; this is explained more thoroughly in Sec. 3.1.3.

The output spectrum generated by the Ti:Sapphire laser does not regularly span an optical

octave, so we use an air-silica microstructure fiber to achieve the required broadening.

The fiber is made of a lattice of air-holes in fused silica. The air-holes result in anomalous

dispersion that cancels out the normal dispersion caused by the silica. For further discussion
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(a) Output Spectrum (b) Micro-structured Fiber

Figure 3.5: Output spectrum (a) after broadening in a nonlinear fiber (b). The spectrum ranges from 450 nm

to 1100 nm, covering the visible frequencies and a small part of the infrared spectrum.

of this effect, see Ref. [36]. Figure 3.5a shows the output spectrum of our comb after

broadening in a nonlinear fiber. A more detailed discussion of the setup and stabilization

of the frequency comb can be found in Refs. [29, 35,37].

3.1.2 Detection, Control, and Stabilization of frep

To detect frep, part of the comb laser is picked off and sent to a fast photodi-

ode (Electro-Optics Technology ET-2030A amplified silicon detector). We control frep by

adjusting the length of the cavity. This is achieved through a feedback loop that controls

the voltage applied across a piezo ceramic. Laser light from the comb is broadened in a

microstructure fiber and sent through a 600 nm short pass filter, and then sent to a fast

photodiode. The incident light contains frep as well as the higher harmonics 2frep, 3frep, ...

because the many modes present in the comb interfere and produce beat frequencies that

are multiples of frep. However, since the detector range is less than 1.5 GHz, harmonics

higher than 2frep are not present in the output signal of the detector. To filter out unwanted

signals, the output of the detector is sent through a bandpass filter. It is then sent to an rf

mixer where it is combined with a signal generated by a synthesizer that is referenced to a
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Figure 3.6: Block diagram of the frep stabilization setup. Picture from Ref. [37].

GPS-steered rubidium atomic clock. The mixer outputs the difference signal between frep

and the synthesizer frequency, also known as the error signal. The error signal is passed

through a loop filter which shapes it so that the piezo will respond as desired. The output

of the loop filter feeds into a high voltage amplifier which drives the piezo ceramic. The

particular piezo ceramic we use is a Noliac CMAR03 PZT 1. The piezoelectric ceramic,

attached to M3 (see Fig. 3.3), is therefore controlled by the feedback loop, as pictured in

Fig. 3.6.

3.1.3 Detection, Control, and Stabilization of f0

Detection of f0 is more complicated than for frep. It requires that the frequency

comb spans an optical octave, meaning that it contains a lower frequency ν1 = n1frep + f0

and a higher frequency ν2 = n2frep + f0, where n2 = 2n1. The lower frequency ν1 can be

doubled and heterodyned with ν2 to extract f0, as shown in Fig. 3.7.

As mentioned in Sec. 3.1.1, an optical octave is produced by passing the comb light

1PZT stands for lead zirconate titanate. It is a type of piezoelectric material.



Chapter 3: Experimental Setup 48

Figure 3.7: To detect f0, a lower frequency ν1 and higher frequency ν2 are beat against each other. Detection

of f0 requires that the comb spans an optical octave.

through a microstructure fiber (see. Fig. 3.8. The frequencies present in the optical octave

range from 530 nm (green) to 1060 nm (infrared). Frequency doubling of the lower frequency

infrared light is achieved using a periodically poled lithium niobate (PPLN) crystal. The

crystal is designed to frequency double light with a wavelength of ∼ 1064 nm. Two pulses,

one composed of frequencies originally near 530 nm and the other composed of the frequency

doubled light, are heterodyned on the photodetector. However, the dispersion from various

optical elements introduces a time delay between the pulses. To account for this phase lag,

a cold mirror that reflects light with a wavelength between 420 and 630 nm but transmits

light with a wavelength between 750 and 1200 nm is used to separate the 530 nm and 1060

nm light and send each of the beams to high-reflectance mirrors before recombining and

passing through the doubling crystal. The position of one of the mirrors is variable. The

path length difference introduced by this splitting and recombining of the beams can be

adjusted by varying the position of the mirror. Judicious adjustment of the mirror position

compensates for the time delay.

A 530 nm bandpass filter is placed after the doubling crystal to isolate the light

originally at 530 nm and the frequency doubled light originally near 1060 nm. The two

beams interfere and are incident on a photodetector. There is ambiguity as to the sign of
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f0, as it is the beat frequency produced by the interference two different frequencies of light.

As such, f0 is the absolute value of the difference of two frequencies:

f0 = |ν2 − ν1|. (3.2)

In other words, it is not clear whether the green light directly produced in the fiber or the

frequency doubled green light has the higher frequency. Correctly determining the sign of

f0 is critically important in determining absolute frequencies and can be done by checking

that the sign is consistent with observed fluorescence spectra, as discussed in Sec. 3.1.6.

It is also important to note that the frequency doubled light will still interfere with comb

modes that have made it through the bandpass filter. As a result, the beam incident on the

fast photodiode will contain not only f0, but |f0 ± frep|, |f0 ± 2frep|, |f0 ± 3frep|, etc.

The offset frequency can be controlled by adjusting the pump power. As a result of

the nonlinear dependence of dispersion in the Ti:Sapphire crystal, a change in pump power

results in a change in f0. The pump power can be varied by passing the beam through an

acousto-optic modulator (AOM). The AOM consists of a crystal attached to a piezoelectric

transducer. Applying an rf voltage across the piezeoelectric transducer produces lattice

vibrations (phonons) that scatter the incident light. This deflects the light so that it does

not couple into the laser cavity. The amount of scattering is proportional to the applied rf

power.

The offset frequency is stabilized with a phase lock similar to the one used for

frep. However, the noise on f0 is much greater than the noise on frep. The repetition rate

drifts by ∼ 100 Hz over a few minutes. In the same time, the offset frequency changes by 5

to 10 MHz. To account for the increased noise, a number of steps are taken to extend the

capture range of the electronics.

As previously mentioned, the beam incident on the fast photodiode contains a
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number of other frequencies in addition to f0, and as a result they are present in the output

signal of the detector. A bandpass filter is used to remove these unwanted signals. The

output signal is then combined with the signal from an atomic-clock-referenced rf generator

so that the sum is 1240 MHz; for example, if the output signal were 300 MHz, we would set

the rf generator to 940 MHz. The resulting signal is passed through a divide-by-8 circuit to

increase the capture range of the phase lock. After passing through the circuit, the signal

has a frequency of 1240 MHz/8 = 155 MHz. A second rf signal generator, also referenced to

the atomic clock, is used to mix-down the signal with a digital phase detector. The resulting

error signal is shaped with a loop filter and sent to an rf generator which drives the AOM.

The relationship between the sign of the error signal and the appropriate response of the

pump power is unclear; a positive error signal does not necessarily indicate that the pump

power should be decreased, and likewise a negative error signal does not necessarily suggest

that power should be increased. To account for this ambiguity, an invert switch on the loop

filter can be flipped to change the sign of the error signal.

The repetition rate is generally more stable than the offset frequency. During data

collection, maintaining the f0 lock requires frequent adjustments to the pump power and

carrier level of the rf driver.

3.2 Diode Laser

While the frequency comb provides us with an absolute frequency, the power in

any one mode of the comb is too little to produce measurable resonance signals. Instead,

we use an extended cavity diode laser that is frequency stabilized to a particular mode of

the comb.
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Figure 3.8: Block diagram of the f0 stabilization setup. Picture from [37].

Figure 3.9: Our Diode laser, mounted in the Littrow configuration. The red double-headed arrow indicates the

extent of the laser cavity. The diode is on the left and the diffraction grating is on the right. By adjusting the

angle of the diffraction grating, we control the wavelength at which the ECDL lases. The length of the cavity is

modulated through the application of a voltage across a piezo ceramic.
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Figure 3.10: Diagram of our ECDL oriented in the Littrow configuration. Adjusting the angle of the grating

relative to the incident beam allows us to select the correct frequency for excitation of atomic resonances. To

scan over the resonances, the cavity length is modulated by application of a voltage across the piezo ceramic. A

lens mounted on the x− y − z translation stage allows for further alignment of the ECDL.

3.2.1 Extended Cavity Diode Laser Setup

In this experiment, our diode laser is mounted in the Littrow configuration, as

shown in Fig. 3.10. The injection current and temperature of the laser diode are controlled

with a ThorLabs LCD205C current controller and TED200C temperature controller, re-

spectively. A collimation lens mounted on an x− y − z translation stage allows for tuning

and alignment of the diode laser. The diffraction grating has 1800 grooves/mm and is at-

tached to a piezo ceramic and mounted on a Polaris Low Drift Kinematic Mirror Mount.

The separation distance between the diode and diffraction grating is ∼ 7 cm.

Adjusting the angle of the diffraction grating allows us to select the correct wave-

length. Adjusting the voltage across the piezo changes the length of the cavity thereby

allowing us to scan over resonances of the lithium atoms.
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3.2.2 Anti-Reflective Coating

In this experiment, we use an AlGaInP laser diode manufactured by Hitachi, and

we have applied anti-reflective (AR) coating to it. Without AR coating, commercially

purchased laser diodes are not ideal candidates for single-mode lasers because their tuning

ranges (via adjustments to the temperature and injection current) are very limited, they

exhibit multi-mode behavior, are sensitive to optical feedback, and are generally unstable.

However, through the application of AR coating, commercially available diodes can be

modified to produce single-mode, narrow linewidth light. The use of AR coated diodes in

conjunction with external cavity feedback leads to significant gains in terms of tuning range,

stability, and having a narrow linewidth [38]. In this experiment, we have AR coated our

diode following the procedure outlined in Ref. [39].

To AR coat our diodes, we first remove the can of the laser diode with a hand-held

ThorLabs diode laser can opener. In a vacuum chamber operating at ∼ 10−7 Torr, a layer

of silicon oxide is evaporated so that it deposits on the laser diode. The output power of the

diode is monitored; a decrease in the power output by the diode indicates that the coating

is reducing the cavity feedback. Coating continues until the power of the diode laser stop

decreasing and starts increasing, at which point a metal shutter is rotated into place to

prevent the further deposition of the coating material. Figure 3.11 shows the power output

of the diode laser as a function of current, with optical feedback, before and after coating.

3.2.3 Frequency Stabilization of the Diode Laser

The frequency of the diode laser is stabilized using the setup shown in Fig. 3.12.

The diode laser and the filtered beam from the frequency comb are passed through a po-

larizing beamsplitting cube, giving the two beams orthogonal polarizations. A polarizer

placed after the beamsplitting cube and oriented at ∼ 45◦ projects the polarization of the
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Figure 3.11: Power of diode laser with external feedback before (red) and after (blue) AR coating.

two beams onto a single axis. The diode and the comb beams are heterodyned; this signal

is monitored with a fast photodiode. A bandpass filter selects one of them and then the

signal is mixed up to 1240 MHz using an rf signal generator. Similar to the stabilization

of f0, this signal is sent to a divide-by-16 circuit2. Not pictured in Fig. 3.12, the signal

is then sent to a 1240 MHz bandpass cavity filter. Using a second rf signal generator, the

signal is mixed down. The output, which is close to zero, serves as the error signal. A

resistor-divider network controls the current feedback.

The injection current provides high frequency (∼ 150 kHz) feedback while the

diffraction grating gives low frequency (∼ 1 kHz) feedback. The grating feedback signal is

sent to a loop filter and then a high voltage amplifier which provides the voltage across the

piezo ceramic to which the grating is attached.

2In this case, a divide-by-16 is used in place of a divide-by-8 circuit because there is more noise on the
diode laser signal than on the f0 signal.
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Figure 3.12: ECDL frequency stabilization setup. Diagram taken from Ref. [29].
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3.2.4 Fabry-Perot Interferometer

The Fabry-Perot interferometer is useful in a number of applications. For example,

it has been used in the analysis of hyperfine spectral structure, determination of the index

of refraction of gases, and the calibration of the standard meter in terms of wavelengths [40].

It can also be used to check whether a laser is operating single-mode, which is how it is

used in this experiment.

3.2.4.1 Planar-Planar and Confocal Fabry-Perot Cavities

A planar-planar Fabry-Perot cavity consists of two partially reflective mirrors ori-

ented parallel to one another and separated by some distance, as shown in Fig. 3.13. The

incident beam enters the cavity and then reflects off of a mirror. Since the mirrors are

only partially reflective, some of the light is transmitted while the rest continues to re-

flect between the inner surfaces of the two mirrors, with part of the beam exiting the cavity

whenever it is reflected by one of the mirrors, allowing the beam to interfere with itself many

times within the cavity. If the cavity length is such that the beam produces standing waves

between the mirrors, then the Fabry-Perot interferometer will transmit light, otherwise it

will interfere destructively and no light will get through. The condition for constructive

interference of the parallel beams is

2d cos(θ) = mλ, (3.3)

where d is the separation distance between the two mirrors, θ is the angle of the incident

beam relative to the optical axis of the system, m is an integer, λ is the wavelength of

the light, and we are assuming that air with an index of refraction n = 1 fills the space

between the mirrors. The Fabry-Perot cavity can therefore be used to test whether a beam

is of a single-frequency. If the wavelength of a single-mode incident beam is modulated
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Figure 3.13: Diagram of a planar-planar Fabry-Perot interferometer.

at a constant rate, then it will produce an interference maximum when the condition for

constructive interference (Eq. 3.3) is met, which will be at regularly spaced intervals in

time.

An alternative version of the Fabry-Perot interferometer consists of two spherical

mirrors, each with a radius of curvature equal to the length of the cavity, as pictured in

Fig. 3.14. One advantage of the confocal Fabry-Perot cavity is that it is much easier

to align than, for example, a cavity with parallel planar mirrors. The spacing between

successive transmission peaks, or the free spectral range (FSR) of a confocal Fabry-Perot

interferometer is given by

FSR =
c

4L
, (3.4)

where L is the length of the cavity.

The Fabry-Perot cavity can provide valuable information about the character of a
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Figure 3.14: Diagram of confocal Fabry-Perot interferometer.

beam. In this experiment, we used a confocal Fabry-Perot cavity to check whether the diode

laser was exhibiting single-mode behavior and to determine the range of frequencies over

which it would remain stable. This was done by applying a ∼ 60 Hz triangle wave to the

piezo ceramic, thereby modulating the cavity length of the ECDL. Transmission through

the Fabry-Perot was monitored with a photodiode. The FSR of our Fabry-Perot cavity is

250 MHz.

Ideally, in the transmission lineshape of our Fabry-Perot interferometer, we like

to see a number of peaks evenly spaced by 250 MHz over a large scan range, i.e. a large

modulation (∼ 3 GHz) of the ECDL frequency. This would indicate that the ECDL is

operating as a single-mode laser. If the spacing of the Fabry-Perot transmission peaks

is irregular, this indicates that the laser is mode hopping. Single-mode behavior can be

optimized by careful alignment of the ECDL. In Fig. 3.15, an example plot of Fabry-Perot

transmission peaks shows a case in which the operation of the laser is single-mode over

∼ 1.5 GHz. However, there is also some irregularity in the spacing of the peaks, indicating

that there is some drift in the frequency of the laser.



Chapter 3: Experimental Setup 59

Figure 3.15: The output of the Fabry-Perot Cavity.

3.2.5 Optical Spectrum Analyzer

In our experiment, we use laser light at a specific frequency to excite energy tran-

sitions in lithium. We use the optical spectrum analyzer (OSA) as a tool to calibrate the

frequency of our diode laser. We use a beam splitting cube to separate a small fraction of the

beam and couple it into a multi-mode fiber that feeds into the OSA. We use a multi-mode

fiber before feeding into the OSA mainly due to the ease of coupling the beam through

multi-mode as opposed to single-mode fiber. The OSA displays the power as a function of

wavelength and allows us to adjust the alignment of the diode laser so that it outputs light

with a wavelength of 670.94 nm.

In practice, we use the OSA only as a rough diagnostic of the wavelength. After

adjusting the alignment of the laser cavity grating so that the OSA indicates that the wave-

length of our beam is 670.94 nm, we do not usually observe fluorescence signal. However,

this results in an alignment that is close to producing the correct wavelength, and so we

proceed to make fine adjustments to the alignment while checking for fluorescence signals

directly, via the output from the PMT. When our laser is on resonance, the OSA consis-

tently reads closer to 671.12 nm, so there appears to be some offset to the measurements
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Figure 3.16: Typical output of the optical spectrum analyzer. The asymmetry displayed on the OSA is an

artifact of the machine and does not reflect the character of our beam.

of the OSA. Also, the OSA indicates that our beam profile is heavily asymmetric. Even

when we coupled a single frequency He:Ne laser into the OSA, the asymmetry was present,

which indicates that this is an artifact of the machine rather than our beam. See Fig. 3.16

for the raw output of the OSA.

3.2.6 Power Stabilization

To compensate for natural fluctuations in the power of the diode laser, we use an

electro-optic modulator (EOM) to actively stabilize the power. Here we discuss how EOMs

work and the explain the power stabilization feedback loop used in the experiment.

In some crystals, the index of refraction depends on the value of the local electric

field. By applying a voltage across a crystal, the index of refraction along one of the

axial directions can be varied. If light that is polarized at some angle relative to the y-

axis propagates through the crystal, then the polarization will be rotated by an amount

depending on the index of refraction of the crystal which is a function of the applied voltage

[41]. The light then passes through a polarizing beam splitter. The power output by either
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(a) Power Stabilization On (b) Power Stabilization Off

Figure 3.17: Fluorescence spectra with (a) and without (b) power stabilization. The power stabilized data

offer significantly increased resolution of the transition.

arm of the beamsplitter will change depending on the polarization angle of the incident

light. Since the EOM controls the polarization of the incident light, it controls the power

that is sent to the interaction region.

In our experiment, we monitor the power of the diode laser by splitting off a small

fraction of the light before it enters the interaction region and sending it to a photodiode.

This signal is sent to a loop filter and compared to a stable dc voltage. The signal is sent

from the loop filter to a high voltage amplifier which amplifies the signal before it is sent to

the EOM. This feedback loop is shown in Fig. 3.12.

For comparison, data collected with and without active power stabilization are

shown in Fig. 3.9. The power stabilization leads to a much less noisy signal and allows for

greater resolution of the spectral lineshape.

3.3 Vacuum Chamber

The atomic beam and the laser interact in high-vacuum, typically around 10−7

Torr when the oven is heated. The vacuum chamber consists of a 4.50” expanded spherical

cube designed by Kimball Physics, various bellows, and an ion pump. The ion pump is
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Figure 3.18: Schematic of the top view of the vacuum chamber. The atomic beam and laser light interact

toward the center of the spherical cube. The laser light enters and exits the vacuum chamber through windows

in bellows (not shown) that are attached to the sides of the spherical cube. Fluorescence is detected by a PMT

that is mounted on the top of the spherical cube.

capable of achieving pressures as low as 10−11 Torr, but the system must be pumped for a

great period of time and baked to achieve such pressures.

The interaction region is located near the center of the spherical cube. The lithium

oven is connected to one side of the cube while the laser enters through an adjacent window.

The PMT is fastened to the top window. See Fig. 3.18 for a schematic of the vacuum

chamber.
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Figure 3.19: Vapor pressure curve for lithium. In this experiment, the atoms are heated to ∼ 350◦ C, which

corresponds to a density of about 1012 atoms/cm3 inside the oven.

3.4 Atomic Lithium Beam

The atomic beam is produced by heating lithium in a stainless steel oven. The

melting point of lithium is 180◦ C, but we usually heat the oven to ∼ 350◦ C [42]. Heating

the lithium to this temperature gives us, according to the vapor pressure curve for lithium,

an atomic density of ∼ 1012 atoms/cm3 (see Fig. 3.19).

3.4.1 Oven

The oven is made of a stainless steel 2 1/8” diameter standard conflat nipple.

Threaded rods, which attach the oven to the vacuum chamber, are welded to a blank flange

which is welded to the back end of the oven. Another blank flange with a diameter of 0.5”

is welded to the front of the oven. The nozzle is bolted so it can be removed, allowing us

to refill the oven once it has been depleted of lithium. For a schematic of the lithium oven,

see Fig. 3.20.

The oven is heated by tantalum heater wire. The tantalum wire is wound into a
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Figure 3.20: A schematic of the lithium oven. Dotted lines indicate holes. The front flange is welded shut and

the nozzle is bolted, rather than welded, to the front of the oven; this allows us to remove the nozzle and load

the oven with lithium. Two heat shields (not pictured) surround the oven.

tight coil and then gently stretched and passed through ceramic tubing to prevent shorting.

One heater surrounds the outside of the lithium chamber while another makes contact with

the nozzle. The body heating elements are held in place with stainless steel wire, while

the nozzle heater is fixed by a blank flange that is screwed into the front flange of the

oven. The nozzle is heated to prevent lithium from solidifying and clogging the nozzle. The

heating of the lithium chamber and nozzle is controlled independently by two Variacs, which

apply voltage across the heater wires. To prevent the radiative dissipation of heat, two thin

sheets of stainless steel have been curved to enclose the chamber region. We measure the

temperature by use of two type-k thermocouples. They are placed on the outside of the

oven, one at the front and the other at the back. As a result, the temperature that we

measure is only a rough estimate of the actual temperature of the lithium atoms. We

have measured temperature differences as large as ∼ 50◦ C between the front and back

thermocouples, yet we have found that the average of these two measurements is consistent

with the amplitudes of the observed signals, see Sec. 3.7.
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3.4.2 Nozzle

The heated lithium atoms leave the oven through a nozzle machined from stain-

less steel, pictured in Fig. 3.22. Seven 0.5” long .0595” diameter sections of a stainless

steel hypodermic needle are inserted into the central channel of the nozzle to produce a

highly collimated atomic beam, increasing the beam density and thus the amplitudes of

the observed signals. Previously, a longer nozzle was used (see Fig. 3.21a). The intention

was to produce an even more collimated beam, however, we rarely observed any fluores-

cence signals when the long nozzle was in place. After spending a considerable deal of time

searching for signals, with limited success, the short nozzle was reinstated, and fluorescence

signals were observed soon thereafter. Initially, we suspected that the longer may have led

to clogging, but before switching back to the short nozzle, the lithium oven and nozzle were

cleaned and reloaded, and the nozzle heater was fastened securely. Still, we did not observe

signals. Another possibility for this difficulty could have been the alignment of the atomic

beam and the laser; we have found that even with the short nozzle, the alignment is very

sensitive to small adjustments of the optics. It is possible that the long nozzle was even

more sensitive to these adjustments, so it conceivable that the more highly collimated beam

did not intersect the laser beam.

3.5 Photomultiplier Tube

We use a 51 mm photomultiplier tube (PMT) manufactured by ET Enterprises to

detect the fluorescence from atomic transitions. A 670 nm filter with a bandpass of 10 nm

is placed over the PMT window to block out ambient light.

The current from the PMT is converted to a voltage by a transimpedance amplifier.

Our transimpedance amplifier has a gain of 105 V/A and a bandwidth of 20 kHz. We use
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(a) Long Nozzle (b) Short Nozzle

Figure 3.21: Renderings of the long (a) and short (b) nozzles. Previously, the long nozzle was used in hopes

of producing a more collimated atomic beam. The thought was that a more collimated beam would improve

the observed signal sizes, but we encountered significant difficulty in finding resonance signals with the long

nozzle. In the current setup, we use the short nozzle. Stainless steel hypodermic needles are inserted in the

nozzle channel to produce a collimated beam.

Figure 3.22: Nozzle pictured next to a quarter. The seven stainless steel hypodermic needles can be seen in

the central channel.
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(a) Front view of the nozzle (b) Side view of the nozzle

Figure 3.23: Front and side view of the nozzle. In Fig. 3.23a, we see that Seven small circular tubes are

inserted in the central channel, each of radius .0595”. The small radius of the tubes reduces the Doppler width.

In Fig. 3.23b, we see that the angle θ is calculated based on the geometry of the nozzle.

Labview and a 16 bit ADC to digitize and record the PMT signal.

3.6 Doppler Width Estimate

We can obtain an estimate for the size of Doppler broadening by assuming that

atoms leaving the oven have an average velocity given by

vavg =

√
8kBT

πm
(3.5)

and that the angular divergence is given by

θ = arctan

(
r/2

d

)
, (3.6)

where r and d are indicated in figure 3.23. Our nozzle design has seven circular tubes

inserted into the nozzle channel to further decrease the Doppler width. As mentioned in

Sec. 3.4.2, each circular tube has a radius r = .0595” and a length d = .5”.

Since T ≈ 600 K, the transverse velocity is

vt = vavg sin(θ) =

√
8kBT

πm

r

d
≈ 80 m/s. (3.7)
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From Eq. 2.81, we obtain as an order of magnitude estimate that ∆f ≈ 120 MHz. For

comparison, the natural linewidth of the D1 and D2 transitions is ∼ 6 MHz, as stated in

Sec. 2.7.2.

3.7 Temperature Estimate

As a check for consistency with the temperature we infer from the thermocouple

readings, we can estimate the temperature of the atoms based on the measured signal size.

A typical fluorescence signal is on the order of 500 mV. The gain of the transimpedance

amplifier was 105 V/A, while the signal current from the PMT was 5 × 10−6 A. At an

operating voltage of 800 V, the gain was about 105. The photoelectron current is then the

signal current divided by the PMT gain, or roughly 5× 10−11 A ≈ 3× 108 photoelectrons

per second. Since the detection efficiency of the PMT is 0.05, the number of photons per

second incident on the PMT was about 6 × 109. However, the transmission rate of the

interference filter in front of the PMT was only about 0.3 and the detection efficiency was

estimated to be roughly 0.05 based on a Monte Carlo calculation, so the number of photons

per second scattered was 4 × 1011. The power of the beam into the chamber was about

50 µW or about 2 × 1014 photons per second. From the beam power and the number of

photons per second scattered, we find that the probability of one photon scattering is

Pγ =
4× 1011

2× 1014
= 4× 10−3 = nσabsz. (3.8)

For resonant atoms, the cross section is approximately [27]

σ0 =
3λ2

2π
= 2.13× 10−13 m2. (3.9)

Due to the transverse velocity distribution of atoms in the atomic beam, some of the atoms

are not resonant with the transition. It is a good estimate that the fraction of resonant
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atoms is equal to the ratio of the natural line width to the Doppler line width, so one obtains

an effective absorption cross section

σabs = σ0
Γ0

ΓD
= 1.26× 10−14 m2. (3.10)

Since Pγ = nσabsz, where z ≈ 1 cm, one can solve the equation to obtain the beam density

n = 106 atoms per cm3. (3.11)

Since the beam density is a factor of 106 times smaller than the oven density (an estimate

obtained by comparing the atom density at the nozzle, found from the vapor density curve

for Li, to the area over which atoms spread out in the interaction region times the atoms’

velocity), the atom density in the oven is about 1012 atoms per cm3. This corresponds to a

temperature of 380◦ C.

This calculated temperature agrees reasonably well with what we measure with

our thermocouples. For this particular observed fluorescence peak, the calculation is 10◦C

lower than the temperature we recorded in the front of the oven and 44◦C higher than the

temperature recorded in the back of the oven.

3.8 Frequency Standard Stability

In our experiment, the frequency comb is stabilized to a GPS-referenced rubidium

atomic clock. Since frequency standards tend to drift over long timescales, a standard devi-

ation calculation is not useful in characterizing the stability of the clock. Instead, a measure

called the Allan deviation is more descriptive. The Allan deviation avoids divergence over

long timescales by using a series of deviations over sets of neighboring points to determine

how the standard deviation changes over time.
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3.8.1 Definition of Allan Deviation

If we let ν(t) be the output frequency of a frequency standard being studied and

ν0 be the frequency of an ideal oscillator, then we can define the normalized frequency

deviation as

y(t) =
ν(t)− ν0

ν0
. (3.12)

The time deviation, x(t), from the initial point t = 0 is then the sum of these deviations,

or in the continuous case, it is the integral over time of these deviations:

x(t) =

∫ t

0
y(t′)dt′. (3.13)

The nth average frequency deviation over some interval, τ , is

yn =
xn+1 − xn

τ
, (3.14)

where we have assumed that the spacing τ is small. The “Allan Deviation” is defined as [43]

σy(τ) =

√
1

2
〈(yn+1 − yn)2〉, (3.15)

where the brackets signify an infinite time average. Using Eq. 3.14, the Allan Deviation

can be written as

σy(τ) =
1

τ

√
1

2
〈(xn+2 − 2xn+1 + xn)2〉. (3.16)

The Allan deviation characterizes the stability of an oscillator in terms of the average

frequency deviations, yn between neighboring set of points, rather than by deviations of

all the points from some average value. Since the Allan deviation is a function of the

time interval, τ , over which the average frequency deviation is calculated, it is commonly

expressed graphically using a log-log scale.
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Figure 3.24: The Allan deviation of our rubidium frequency standard compared with various GPS systems,

indicated in red and blue. In any time regime, the better of these two curves indicates an upper bound for the

accuracy of our frequency standard.

3.8.2 Stability of Our Frequency Standard

In this experiment, our frequency synthesizers use a GPS-referenced rubidium

atomic clock as the frequency standard. Figure 3.24 shows that the Allan deviation of our

atomic clock is ∼ 10−11. This translates to an uncertainty in our frequency measurements

of about 10 kHz, so at present, the stability of our clock is not a limiting factor in the

precision of our measurements.

3.9 Data Collection

Before data collection, the frequency comb must be stabilized and the the frequency

of the diode laser must be stabilized to the comb. We stabilize frep before f0 because the

former is usually more stable. Prior to stabilization of fb, the angle of the diffraction grating

and position of the z-focus in the diode laser cavity are adjusted so that the output power is

close to optimal (we typically have about 40µW) and a raw fluorescence signal is observed



Chapter 3: Experimental Setup 72

on an oscilloscope connected to the PMT. Next, frep is tuned so that a suitably sized fb

is observed (we aim for a signal to noise ratio of about 40 dB in a 300 kHz bandwidth).

Attaining an appropriately sized fb often involves further adjustments to the alignment of

the diode laser and frequency comb. After fb is optimized, the diode laser is stabilized to

the comb. Lastly, the power of the diode laser is observed with a photodiode and actively

stabilized by use of an electro-optic modulator (EOM).

The frequency comb is stabilized to an rf signal generator which is controlled by

use of Labview. The computer running Labview communicates with the synthesizer via a

GPIB connection. When collecting data, a typical scan range for frep is ∼ 1 kHz. In a

single scan, the frequency of the rf signal generator is incremented in steps of 1 Hz from the

initial to the final frequency, and then it is decreased back to the initial value, giving both

an “up” and “down” direction for a single scan. As the frequency is scanned over resonances

of the atoms, fluorescence is incident on the PMT and produces a current. The current is

converted to a voltage by use of a transimpedance amplifier. This voltage is sent to a 16

bit analog-to-digital converter (ADC). We record 1, 000 samples per channel and 10, 000

samples per frequency point. Labview is used to digitize and record frep, the PMT signal,

the standard deviation of the samples from the PMT signal, the transmission through the

Fabry-Perot cavity, the standard deviation of the Fabry-Perot signal, the power of our diode

laser, and the standard deviation of the power.



Chapter 4

Results and Analysis

The results of the experiment are presented, interpreted, and discussed in this

chapter.

4.1 Density Matrix Calculations of Spectra

The density matrix can be used to gain a better understanding of a number of

effects that are present in precision measurement experiments. In this section, we use the

density matrix formalism to explore the effects of light polarization and beam power on

fluorescence spectra.

4.1.1 Polarization Effects

As noted in Ref. [8, 44], for transitions that are not resolved beyond the homo-

geneous line width, the polarization angle of the excitation light measured relative to the

direction of detection can have a significant effect on the observed lineshapes of atomic

spectra. This is the result of a quantum interference effect. When the frequency differences

between the different transitions is smaller than the homogeneous line width, the states

73
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are excited coherently. This leads to the interference effects. This polarization effect is

particularly dramatic in the 7Li D2 line.

Figure 4.1 shows a density matrix calculation of the 7Li D2 F = 1 → F ′ = 2, 1, 0

transitions with fluorescence polarization angles of 0◦, 54.7◦ (the magic angle), and 90◦

relative to the direction of detection. As the calculation shows, the different polarization

angles both shift the positions and alter the amplitudes of the peaks. For example, there

is a relative shift of 1 MHz for the F = 1 → F ′ = 1 peak for polarization angles of 0◦

and 90◦. It is also clear that the amplitudes differ depending on the polarization, but it is

difficult to isolate the amplitudes because of the interference effects; the amplitudes cannot

be assigned to particular F → F ′ transitions.

One can compensate for this effect by ensuring that the detected fluorescence is

polarized at the so-called “magic angle.” The interference term is proportional to the second

order Legendre polynomial, which is

P2(x) =
1

2
(1− 3 cos2(θ)), (4.1)

where θ is the angle of detection relative to the excitation. This term is equal to zero when

θ = 54.7, the “magic angle” [8, 44].

4.1.2 Saturated Fluorescence

One of the main motivations for saturated fluorescence spectroscopy is that a

Doppler-free dip appears at the center frequency of the transition. In principle, this means

that the linewidth of the dip is limited only by the natural linewidth of the transition.

The dip is the result of a strong pump beam being retroreflected across the atomic beam.

Due to the Doppler shifts experienced by atoms moving with transverse velocities, atoms

from opposite velocity classes share the excitation demands of the beam. However, for
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Figure 4.1: Calculated spectra for 7Li D2 F = 1 → F ′ = 2, 1, 0 transitions for different polarizations of light

relative to the direction of detection. The polarization angles are 0◦, 54.7◦ (the magic angle), and 90◦. As seen

in the graph, the amplitudes and peak centers are shifted depending on the polarization.

the zero-velocity atoms, the incident beam saturates the transition, resulting in a dip at

the center frequency of the transition. The essential components are retroreflection and

sufficient power to saturate the transition for the zero-velocity class. Without either one

of these, no saturated fluorescence dips will be observed. Figure 4.2 shows a calculation

for a two-level system that illustrates the power dependence of the saturated fluorescence

dip. As the power of the incident beam is decreased, the dip becomes less prominent and

eventually disappears.

A complicating phenomenon in saturated fluorescence spectroscopy as applied to

multi-level systems is that extra dips or peaks will sometimes occur. If the fluorescence

spectra of transitions sharing an excited or lower energy state overlap within their Doppler

width [45], then extra dips, known as crossover resonances, appear. Consider two transitions

that overlap within their Doppler width and share a lower level. An incident beam with

a frequency halfway between these center frequencies will saturate two velocity classes for

the first transition, due to Doppler shifts. However, the reflected beam will saturate one of
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Figure 4.2: Calculated spectra of a two-level system for various strengths of the electric field. As the strength

of the electric field is decreased, the saturated fluorescence dip goes away.

the same velocity classes as the incident beam, and this results in a total of three saturated

dips, one at each of the transition centers and another halfway in between.

4.2 Data

Raw data from scans over various resonances of 7Li and 6Li are shown in Fig. 4.4.

When frep is scanned, the rf signal generator incremented up to a final frequency and then

decremented back to the initial frequency, so each point in frequency is associated with two

points in fluorescence signal.

4.2.1 Data Cleaning

After data have been collected, the data sets, or “scans,” are loaded into the data

analysis program IgorPro. Fluctuations in the various phaselocks make it necessary to

discard certain points in data scans, as they add only noise to the measured fluorescence

signals. These fluctuations show up as a power variation in the photodiode signal. A
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Figure 4.3: A crossover resonance occurs because either the reflected or incident) beam burns a hole in

the population distribution that is then excited by the opposite beam on a different transition. In panel (a),

the incident (blue) and reflected (red) beams each excite atoms from different velocity classes to two different

transitions. In panel (b), the frequency of the laser is tuned, and the excited velocity classes move towards each

other, since one of the beams is retroreflected. Finally, in panel (c), the incident beam saturates one of the

transitions for a velocity class, but the reflected beam saturates the same velocity class for the other transition,

leading to a crossover resonance.

(a) (b)

(c) The frequency comb went out in the middle of
the scan. (d) The comb remained stable throughout this scan.

Figure 4.4: Raw data collected for this experiment.
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procedure is run that checks whether each point in the laser power data set is within a

particular range. For example, the procedure will check whether the power associated with

a particular point is within three standard deviations of the average power. If the power

lies within this range, then the the data associated with this point remain unchanged. If

the power is more than three standard deviations from the average power, then all data

(meaning the values for frep, the PMT signal, the standard deviation of the samples from

the PMT signal, the transmission through the Fabry-Perot cavity, the standard deviation

of the Fabry-Perot signal, the power of our diode laser, and the standard deviation of the

power signal) for this point are discarded. This cleaning procedure is repeated multiple

times to eliminate noise from the raw data.

Even after this initial cleaning phase, a visual inspection of the PMT signal vs.

frep plots will often reveal that noisy portions of the data remain. These values are removed

by hand.

4.2.2 Converting frep to an Absolute Frequency and Peak Identification

From Eq. 3.1, we know that frep can be converted into an absolute frequency

if one knows the mode number, n, the repetition rate, frep, and the effective offset. In

this case, the effective offset is given by the sum of the offset frequency, f0, and the beat

frequency, fb. However, as mentioned in Secs. 3.1.5 and 3.2.3, it is not clear whether the

signs of f0 and fb are positive or negative. Without knowledge of their signs, one is left
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with four possibilities for converting frep into an absolute frequency:

ν1 = nfrep + f0 + fb,

ν2 = nfrep + f0 − fb,

ν3 = nfrep − f0 + fb,

ν4 = nfrep − f0 − fb.

(4.2)

By comparing the experimental spectra to spectra with identified peaks, and by using other

clues such as the relative detunings of peaks, one can unambiguously determine which

transitions the peaks correspond to, and thus the absolute transition frequencies belonging

to those peaks. This initial guess is tested by solving Eqs. 4.2 for n for given frep, f0, and

fb. Since n has to be an integer, it is likely that only one equation will yield a value for

n that is close to an integer. After this prescription is used to determine n, the measured

frequencies can be converted into absolute frequencies using Eq. 3.1.

4.2.3 Cleaned Data with Identified Peaks

A number of the observed spectra with identified peaks are shown in Fig. 4.5.

These data have been cleaned according to the procedure outlined in Sec. 4.2.1 The data

show a number of transitions from the 7Li D1, D2 and 6Li D1, D2 transitions.

In Fig. 4.6, we see the 7Li D2 F = 1 → F ′ = 1 transition scanned over multiple

times at different powers of the diode laser (the F ′ = 0, 2 transitions are also present, but

unresolved). This clearly shows how the saturation dip disappears as the beam power is

decreased. These actual data agree qualitatively with the two-level model spectra, pictured

in Fig. 4.2, showing the same phenomenon.

Finally, in Fig. 4.7, we see the 7Li D1 and 6 Li D2 transitions for both a retrore-

flected and a non-retroreflected beam. As we expect, the non-retro beam shows no saturated

fluorescence dip.
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(a) Cleaned data for the 6Li D1 F = 2→ F ′ = 1, 2
and 6Li D2 F = 3/2→ 1/2, 3/2, 5/2 transitions.

(b) Cleaned data for the 7Li D1 F = 1→ F ′ = 1, 2
transitions.

(c) Cleaned data for the 6Li D1 F = 3/2→ 1/2, 3/2
transitions.

Figure 4.5: Cleaned data showing the fluorescence spectra for various transitions in 7Li and 6Li.



Chapter 4: Results and Analysis 81

Figure 4.6: These data are all of the same isolated peak of the 7Li D2 F = 1 → F ′ = 1 transition, but for

various levels of power. The frequency comb and diode laser happened to remain stable during this scan. The

resonance was scanned over continuously and the power was reduced at the end of each loop. The saturated

fluorescence dip becomes less prominent and eventually disappears as the power is decreased, in agreement with

the model in Sec. 4.1.2.

4.3 Curve Fitting

To extract the saturated fluorescence locations from the data, the sections of the

data containing the dips were removed and the remaining data were fit. The fit was then

subtracted from the experimental spectra, leaving the saturated fluorescence peaks. Since

the lineshape for atomic fluorescence spectra is neither Gaussian nor Lorentzian, the data

were fit using a number of different functions, each consisting of of a Gaussian, a Lorentzian,

and an additional term to account for the observed asymmetry, all multiplied together.

Through trial and error, the following fit function was arrived at:

F(ν) = B +
∑
i

Aie
−(ν−νi)

2

2σ2

γ2

4
γ2

4 + (ν − νi)2

(
1 +

10∑
n=1

cn(ν − νi)n
)
, (4.3)

where the sum is taken over the number of resonance peaks present. The fit has one baseline

offset term (B), i peak amplitude terms (An), i terms defining the center of the peaks (νi),

two terms describing the widths of the Gaussian and Lorentzian curves (γ and σ), and

finally 10 coefficients (ci) for the tenth-degree polynomial. This gives a total of 2i + 13
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(a) No retroreflection

(b) Retroreflection

Figure 4.7: Figures 4.7a and 4.7b show scans of 7Li D1 and 6 Li D2 resonances that were performed while

the retroreflected beam was blocked and unblocked, respectively. In the blocked case, there are no saturated

fluorescence dips present. On the other hand, when the beam was unblocked, dips were present.
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free parameters for each fit, where i is the number of peaks. The fits were weighted by

the standard deviation of the PMT voltage divided by
√
N , where N = 104, the number

of samples per frequency point. These fits are shown in Fig. 4.8, along with calculations

of the lineshapes and associated saturated fluorescence spectra. The modeled spectra were

obtained through a density matrix calculation. See appendix 2 for the code used to produce

these plots.

The χ2 values for the fits shown in Figs. (a), (b), and (c) were 9.3 × 104 (1488

points), 5.4× 104 (547 points), and 2.7× 104 (789 points), respectively. The large χ2 values

could be an indicator that we are oversampling and consequently that the estimate of the

uncertainty is too small due to the correlation of the samples.

The fits were especially sensitive to the coefficients for higher order terms in the

polynomial factor, so the fits were produced iteratively. They were first computed by fixing

all of the ci coefficients to be zero. For the preliminary fits, the relative differences between

the peak positions were also fixed based on the values given in [8]. The resulting values

were then substituted as the initial values for the fit and fixed parameters were gradually

freed.

The structure of the residuals in (b) are almost absent. However, the residuals

shown in Figs. (a) and (c) show that there are some problems with the fit for 7Li D1

F = 2 → F ′, 6Li D2 F = 3/2 → F ′, and 6Li D1 F = 3/2 → F ′ transitions. The residuals

for (c) show significant fluctuations where the data were removed. The failure of this fit

can be seen in (f), as the data near 200 MHz rise above the fit. In plot (e), we can see that

the fit diverges from the data when compared on the right part of the graph. Moving to

the middle, to the saturated fluorescence dip, we can see that the fit is displaced slightly

to the left of the data throughout the entire region that was removed for the fit. Despite

the appearance of the residuals, there is still an asymmetry to the peak that is not entirely
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described by the fit we have chosen.

Two crossover resonances are evident in these data. The crossover peak in (h)

is particularly clear. As expected, it lies halfway between the F = 1 → F ′ = 1 and

F = 1 → F ′ = 2 peaks. Additionally, since the resonance occurs halfway between two

transitions sharing a lower state (7Li D1 F = 1), we would expect a dip in the data, and

therefore a peak when the fit is subtracted off. However, the relative amplitude does not

match up perfectly with the calculation shown in (k). There is also a noticeable crossover

dip in plot (i). This is corroborated by the calculation in plot (l), which shows similar

relative amplitudes for the corresponding peaks in plot (i).

Three peaks in (g) are clearly resolved, namely the 6Li D2 F = 3/2 → F ′, and

7Li D1 F = 2 → F ′ = 1, 2 transitions. However, the spectra calculation in plot (j) reveals

that the 6Li F = 2 → F ′ = 1 peak is also present in this region. However, its amplitude

is small relative to the peaks surrounding it. Additionally, the calculation indicates that

there is a cross over resonance between the 7Li D1 F = 2 → F ′ = 1, 2 peaks, as we would

expect since their separation is on the order of the natural linewidth of lithium. This further

complicates the resolution of the 6Li F = 2→ F ′ = 1 transition and suggests that saturated

fluorescence spectroscopy might not be suitable for resolving peaks located between other

peaks whose separation is on the order of the natural linewidth of lithium.

4.4 Systematics

Zeeman splitting and ac Stark shifts are systematic effects that play an important

role in this experiment. Zeeman splitting arises because of the earth’s magnetic field. To

compensate, we have constructed three sets of orthogonal coils in a near Helmholtz coil

configuration around the vacuum chamber and zeroed the magnetic field at the interaction
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.8: To gain a higher resolution of peak centers, the portions of the spectra containing the saturated

fluorescence dips were removed, and the data remaining were fit. Each original dataset was then subtracted

from its corresponding fit. This is summarized moving from the top row to the third row. The last row contains

modeled spectra, which were generated through a density matrix calculation.
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region. Assuming that the we have zeroed the magnetic field to within 10 mG, we can make

a rough estimate of the size energy splitting in the 2P1/2 state of 7Li, which has gJ ≈ 2/3.

Using Eq. 2.5.8, we have

∆E = µBgJMJB ≈ 9.4× 103 Hz. (4.4)

This corresponds to a frequency shift of about 10 kHz. Since this is less than the natural

linewidth of lithium, the result is a slight broadening of the lineshape. This systematic

effect can be eliminated by intentionally splitting the lines through application of a strong

magnetic field, which would be done using the coils. Since the splitting scales linearly with

the strength of the magnetic field, the splitting can be plotted vs. the magnetic field, and

then extrapolated to zero.

Another important systematic effect is the ac Stark shift. The ac Stark shifts in

this experiment are a caused by the laser that excites the transitions. We can use Eq. 2.70

to estimate the ac Stark shifts for the 7Li D1 F = 1 → F ′ = 1 transition. Assuming a

beam radius of 1 mm and a power of 40 µW, and noting that the intensity is proportional

to the square of the electric field, we obtain an an electric field of ∼ .8 V/cm. Using the

separation between the resonance, ω − ω0 ≈ 2π × (10 MHz), the approximation d ≈ 1.28

MHz/(V/cm), and using the estimate that the electric field from the laser is ε ≈ .8 V/cm,

we have

∆E ≈ d2ε2

4h̄(ω − ω0)
≈ 1.2× 104 Hz, (4.5)

which converts to a frequency shift of ∼ 80 MHz. Since ac Stark shifts are proportional

to the square of electric field, the shift could be plotted against power and extrapolated to

zero, which would eliminate this systematic uncertainty.

The uncertainty of our frequency standard also contributes to the uncertainty

budget, but is not currently a limiting factor. Our frequency standard is accurate to roughly
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2 parts in 10−11 [37]. The uncertainty in our frequencies is then

δν =
√
δf2
b + δf2

0 + nδf2
rep, (4.6)

and since n is on the order of 4 × 105, the uncertainty contributions from fb and f0 are

negligible, and we obtain

δν ≈ nδfrep = 2× 1011 × 4× 105 × 1 GHz

≈ 10 kHz.

(4.7)

This is comparable to the uncertainty from Zeeman splitting.

The statistical uncertainty of our current measurements offers a small contribution

to the uncertainty. The maximum shot noise for which a peak can be resolved is given by

δν =
γ√
N
, (4.8)

where γ is the width of the peak and N is the number of scattered photons. With γ ≈

80 MHz and N ≈ 1011, δν ≈ 250 Hz.

The fit uncertainties are currently the most significant limiting factor in the accu-

racy of our measurements. Since saturated fluorescence spectroscopy results in Doppler-free

dips, we would expect the subtracted off data (Fig. 4.8 (g), (h), and (i)) to be described by

Lorentzian curves, bu this is not the case. The relatively poor quality of the subtracted off

data may limit the experiment using the saturated fluorescence technique.
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Conclusions

We have presented preliminary data from an experiment aimed at high-precision

measurement of Li D1 and D2 lines. For transitions whose relative separation is on the order

of the natural linewidth, the inevitable emergence of crossover signals adds an additional

layer of complexity to saturated fluorescence spectra. When a saturated fluorescence dip

occurs near a transition peak, it becomes difficult to resolve the location of the transition.

Addressing this issue will likely involve further investigation of the power dependence of

saturated fluorescence lineshapes, and may ultimately mean that saturated fluorescence

spectroscopy is not suitable for resolution of transitions whose separation is comparable to

the natural linewidth.

Regardless of whether saturated fluorescence continues to be used in this experi-

ment, extracting meaningful precision measurements will mandate a careful consideration of

the uncertainty budget. In principle, statistical uncertainty is only limited by the accuracy

of our frequency standard, which is about 2 parts in 10−11 [37]. When the various locks

remain stable, the signal to noise ratio of our data is also very high, as indicated by the

smoothness of the observed spectra.

88
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The poor quality of the curve fitting, as indicated by the subtracted-off fits shown

in Figs. 4.8 (g), (h) and (i), is a severely limiting factor. There is an inherent asymmetry

in the data, and it is not clear what sort of fit should be used. Ideally, the Doppler-

free transitions in the subtracted-off fit should have Lorentzian profiles, but this is clearly

not what we observed. In addition to the noisy quality of these fits, there are sometimes

crossover resonances that further obscure the underlying lineshape of the transitions. Proper

curve fitting must be further investigated, and it may ultimately indicate that an approach

besides saturated fluorescence spectroscopy will be necessary.

5.1 Future Directions

In the future, we intend to implement a magneto-optical trap (MOT) to eliminate

the Doppler width. The MOT cools and traps atoms using a number of lasers and an

inhomogeneous magnetic quadrupole field. The inhomogeneous field is produced by current

flowing in opposite directions through magnetic coils in an anti-Helmholtz configuration.

Atoms at the center of the MOT are exposed to laser light from 6 axial directions. For atoms

at the center of the trap, the magnetic field is zero, and the total momentum absorbed is

zero because the absorption rates are equal for the 6 incident laser beams. Atoms that are

not at the center will have their magnetic sublevels split. Consequently, they experience a

net transfer of momentum which forces them back to the center of the trap, so there is a

restoring force for atoms not at the center. For a more detailed discussion of Doppler-cooling

and MOTs, see Refs. [45, 46]. Figure 5.1 shows an example setup for a MOT.
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Figure 5.1: Sample setup for a magneto-optical trap. The separation between the coils is equal to the radius.

Current flows in opposite directions through the coils, producing an inhomogeneous magnetic field at the center

of the the MOT. Atoms are exposed to laser light from six directions. Atoms offset from the center of the trap

have their magnetic sublevels split and experience a restoring force towards the center. Atoms at the center

experience no magnetic field and experience a net force of zero.
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Appendix A

Two-Level Density Matrix

Calculation

The following is a two-level density matrix calculation implemented in Mathemat-

ica, authored by J. E. Stalnaker. The Atomic Density Matrix (ADM) package found at

http://budker.berkeley.edu/ADM/ was used in this calculation. This package was devel-

oped by D. Budker and S. Rochester. The ADM package was accessed on Jan. 28, 2013.

This code was used to produce Fig. 2.5.
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Appendix A: Two-Level Density Matrix Calculation 95

Density Matrix Calculation for Two-Level Atom with Saturated 
Fluorescence Spectroscopy
Load Atomic Density Matrix Package

<< AtomicDensityMatrix`

H*ParallelEvaluate@<<AtomicDensityMatrix`D;*L

values = 9
Α ® 7500,

Ω0 ® 446 789 596.091, H*Center of Gravity for D1 Transition in MHz*L
G ® 6, H*Natrual Linewidth in MHz*L
WR ® 10, H*Rabi Frequnecy in MHz*L
ΓT ® 0.1, H*Transit Linewidth in MHz*L

k ®
1

671. ´ 10-7

1

106
, H*k in units of 1�H2 Π cmL*L

H*e®1,

ReducedME@1,8Dipole,1<,2D®1,*L
BranchingRatio@2, 1D ® 1 H*Branching Ratio for Decay *L

=;

Define Atomic System

Ground State is labeled “1” and Excited State is labeled “2”

sys = 8
AtomicState@1D,

AtomicState@2D
<;

Display Density Matrix

DensityMatrix@sysD �� MatrixForm

K Ρ1,1@tD Ρ1,2@tD
Ρ2,1@tD Ρ2,2@tD O

Define Optical Field

optf = OpticalField@Ω + k v + Φ, E0, 80, 0<D +

OpticalField@Ω - k v - Φ, E0, 80, 0<DH*x-polarized light*L

9ã
-ä t H-k v-Φ+ΩL E0 + ã

-ä t Hk v+Φ+ΩL E0, 0, 0=

Define Hamiltonian

HSimplify@h =

Hamiltonian@sys, ElectricField ® Hoptf �. E0 ® WR � ReducedME@1, 8Dipole, 1<, 2DLDD �.

8Energy@1D ® 0, Energy@2D ® Ω0<L �� MatrixForm

K 0 -WR HCos@t Hk v + Φ - ΩLD + Cos@t Hk v + Φ + ΩLDL
-WR HCos@t Hk v + Φ - ΩLD + Cos@t Hk v + Φ + ΩLDL Ω0

O
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Unitary Matrix for Rotating Wave Approximation

HuRWA = MatrixExp@ä t DiagonalMatrix@Table@If@i £ 1, 0, ΩD, 8i, 1, 2<DDDL �� MatrixForm

1 0

0 ãä t Ω

Hamiltonian in the Rotating Frame

Transformed Hamiltonian before RWA

HhRWA = FullSimplify@uRWA.h.Inverse@uRWAD + ä D@uRWA, tD.Inverse@uRWADD �. 8Ω ® Ω0 + D< ��
TrigToExpL �� MatrixForm

Energy@1D -
1

2
ã-ä t Hk v+ΦL WR -

1

2
ãä t Hk v+ΦL WR -

1

2
ã-ä t Hk v+ΦL-2 ä t HD+Ω0

-
1

2
Iã-ä t Hk v+ΦL + ãä t Hk v+ΦLM I1 + ã2 ä t HD+Ω0LM WR -D - Ω0 + Energy@2D

IhPrime = hRWA �. 9ã
2 ä t HD+Ω0L

® 0, ã
-2 ä t HD+Ω0L

® 0,

ã
-ä t Hk v+ΦL-2 ä t HD+Ω0L

® 0, ã
ä t Hk v+ΦL-2 ä t HD+Ω0L

® 0=M �� MatrixForm �� Simplify

Energy@1D -
1

2
ã-ä t Hk v+ΦL I1 + ã2 ä t Hk v+ΦLM WR

-
1

2
Iã-ä t Hk v+ΦL + ãä t Hk v+ΦLM WR -D - Ω0 + Energy@2D

Transformed Hamilitonian after the RWA

H*IhPrime=SimplifyAhRWA�.HExp@ExpandAll@a_.Ω t+c_.DD®0L��.

9Ω®
Ω1+Ω2

2
,Ω1®HΩ0+D1L,Ω2®HΩ0+D2L=EM��MatrixForm*L

Relaxation Hamiltonian

MatrixForm@
relax = HIntrinsicRelaxation@sysD �. 8NaturalWidth@1D ® 0, NaturalWidth@2D ® G<L +

TransitRelaxation@sys, ΓTDD

K ΓT 0

0 G + ΓT
O

Repopulation Hamiltonian

repop = K ΓT + G 0

0 ΓT
O;

Equations of Motion

TableForm@eqs = Flatten�LiouvilleEquation@sys, hPrime, relax, repopD ��.

8Energy@1D ® 1, Energy@2D ® Ω0, Φ ® 0< ��. valuesD

Ρ1,1
¢@tD � 6.1 - 0.1 Ρ1,1@tD - ä I5 IãH0.-0.0149031 äL t v + ãH0.+0.0149031 äL t vM Ρ1,2@tD + I-5 ãH0.-0.0149031 äL t v

Ρ1,2
¢@tD � -3.1 Ρ1,2@tD - ä I-I-5 ãH0.-0.0149031 äL t v - 5 ãH0.+0.0149031 äL t vM Ρ1,1@tD + Ρ1,2@tD + D Ρ1,2@tD + I

Ρ2,1
¢@tD � -3.1 Ρ2,1@tD - ä I-5 IãH0.-0.0149031 äL t v + ãH0.+0.0149031 äL t vM Ρ1,1@tD - Ρ2,1@tD - D Ρ2,1@tD + 5 Iã

Ρ2,2
¢@tD � 0.1 - ä I-5 IãH0.-0.0149031 äL t v + ãH0.+0.0149031 äL t vM Ρ1,2@tD - I-5 ãH0.-0.0149031 äL t v - 5 ãH0.+0.0149031

TableForm@inits =

Flatten�InitialConditions@sys, Table@If@i £ 1 && i � j, 1, 0D, 8i, 1, 2<, 8j, 1, 2<D, 0DD
Ρ1,1@0D � 1

Ρ1,2@0D � 0

Ρ2,1@0D � 0

Ρ2,2@0D � 0

2   TwoLevelSatFluorescenceB-1.nb
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startFreq = -300;

stopFreq = 300;

∆f = 2;

startV = 0;

stopV = 20 000;

∆V = 50;

freqSteps =
stopFreq - startFreq

∆f
+ 1;

vSteps =
stopV - startV

∆V
+ 1;

pVel = 8<;

AbsoluteTiming@
Do@8

p = Table@DensityMatrix@sysD ��.

NDSolve@8eqs �. values �. v ® vi �. Φ ® 0, inits<, DMVariables@sysD, 8t, 0, 1.5<,

AccuracyGoal ® 3, PrecisionGoal ® 3DP1T, 8D, startFreq, stopFreq, ∆f<D;

pV0MFn@t_D = p;

pVel = Append@pVel, Table@8startFreq + Hj - 1L ∆f,

Mean@Table@pV0MFn@tDPjT, 8t, 0, 1.5, 0.1<DD<, 8j, 1, freqSteps<DD;

Print@viD;

<, 8vi, startV, stopV, ∆V<D;D

dopDist@v_D := ã
-

v2

Α2 �. Α ® 7500

vIntSpec =

Table@
8Take@pVel, 81<DP1TPiTP1T,

Sum@dopDist@startV + ∆V Hj - 1LD Chop@Take@pVel, 8j<DP1TPiTP2TP2TP2TD,

8j, 1, vSteps<D + Sum@dopDist@startV + ∆V Hj - 1LD
Chop@Take@pVel, 8j<DP1TPiTP2TP2TP2TD, 8j, 2, vSteps<D<,

8i, 1, freqSteps<D;

ListPlot@vIntSpec, PlotRange ® AllD

-300 -200 -100 100 200 300

20

40

60

TwoLevelSatFluorescenceB-1.nb  3



Appendix B

Lithium Density Matrix

Calculation

The following is a density matrix calculation for the 7Li D1 line implemented in

Mathematica. The author is J. E. Stalnaker. The Atomic Density Matrix (ADM) package

found at http://budker.berkeley.edu/ADM/ was used in this calculation. This package was

developed by D. Budker and S. Rochester. The ADM package was accessed on Jan. 28,

2013.
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Density Matrix Calculation for 7 Li D1 Line
Load Atomic Density Matrix and Other Packages

<< AtomicDensityMatrix`

ParallelEvaluate@<< AtomicDensityMatrix`D;

Needs@"DifferentialEquations`NDSolveProblems`"D;

Needs@"DifferentialEquations`NDSolveUtilities`"D;

<< PlotLegends`

Parameters

values = 9
Α ® 3000,

Ω0 ® 446 800 129.853, H*Center of Gravity for D1 Transition in MHz*L
G ® 6, H*Natrual Linewidth in MHz*L
WR ® 10, H*Rabi Frequnecy in MHz*L
ΓT ® 0.1, H*Transit Linewidth in MHz*L
k ®

1

671. ´ 10-7

1

106
, H*k in units of 1�cm*L

H*e®1,

ReducedME@1,8Dipole,1<,2D®1,*L
BranchingRatio@2, 1D ® 1 H*Branching Ratio for 2P3�2 Decay to 2S1�2*L=;

Define Atomic System

Ground State is labeled “1” and Excited State is labeled “2”

sys = Sublevels�9
AtomicStateA1, J ®

1

2
, L ® 0, S ®

1

2
,

NuclearSpin ®
3

2
, Energy ® 0, NaturalWidth ® 0, HyperfineA ® 401.752E,

AtomicStateA2, J ®
1

2
, L ® 1, S ®

1

2
, NuclearSpin ®

3

2
,

Energy ® Ω0, NaturalWidth ® G, HyperfineA ® 45.914E=;H*Hyperfine Coefficients from Arimondo - ignores the J-J mixing*L
Display Density Matrix

DensityMatrix@sysD �� MatrixForm

Define Optical Field

optf = OpticalField@Ω + k v, E0, 80, 0<D +

OpticalField@Ω - k v, E0, 80, 0<DH*x-polarized light*L
9ã

-ä t H-k v+ΩL E0 + ã
-ä t Hk v+ΩL E0, 0, 0=
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Define Hamiltonian

HSimplify@h = Hamiltonian@sys,

ElectricField ® Hoptf �. E0 ® WR � ReducedME@1, 8Dipole, 1<, 2DLDDL �� MatrixForm

Unitary Matrix for Rotating Wave Approximation

uRWA = MatrixExp@ä t DiagonalMatrix@Table@If@i £ 8, 0, ΩD, 8i, 1, 16<DDD;

Hamiltonian in the Rotating Frame

Transformed Hamiltonian before RWA

IhPrime = hRWA �. 9ã
2 ä t HD+Ω0L

® 0, ã
-2 ä t HD+Ω0L

® 0=M �� MatrixForm �� Simplify

Relaxation Hamiltonian

MatrixForm@relax = IntrinsicRelaxation@sysD + TransitRelaxation@sys, ΓTDD;

Repopulation Hamiltonian

MatrixForm@repop = OpticalRepopulation@sysD + TransitRepopulation@sys, ΓTDD;

Equations of Motion

TableForm@eqs = Flatten�LiouvilleEquation@sys, hPrime, relax, repopD ��. valuesD
Solutions to Equations of Motion for Different Values of D

TableFormAinits = Flatten�

InitialConditionsAsys, TableAIfAi £ 8 && i � j,
1

8
, 0E, 8i, 1, 16<, 8j, 1, 16<E, 0EE;

Calculate the spectrum for the zero-velocity class

AbsoluteTiming@
pV0 = Table@DensityMatrix@sysD ��. NDSolve@8eqs �. values �. 8v ® 0<, inits<, DMVariables@

sysD, 8t, 0, 1<, AccuracyGoal ® 2, PrecisionGoal ® 3DP1T, 8D, -500, 800, 5<D;D
889.7001576, Null<

DoA8deltaI = ToString@DIndexD;

ToExpression@"pD" <> deltaID@t_D = pV0PDIndexT;<,

9DIndex, 1,
1300

5
+ 1=E;

AbsoluteTimingAexcStatePopV0 = TableA8HdeltaI - 1L H5L - 500,

Sum@Mean@Table@ToExpression@"pD" <> ToString@deltaIDD@tDPjTPjT, 8t, 0, 1, 0.1<DD,

8j, 9, 16<D<, 9deltaI, 1,
1300

5
+ 1=E;E

813.0104229, Null<

2   Li7D1DensityMatrixVelDistADMThesis.nb
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ListPlot@excStatePopV0, PlotRange ® All, Joined ® TrueD
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0.12

Calculate the spectrum over a range of velocity classes

startFreq = -600;

stopFreq = -100;

∆f = 2;

startV = 0;

stopV = 7000;

∆V = 100;

freqSteps =
stopFreq - startFreq

∆f
+ 1;

vSteps =
stopV - startV

∆V
+ 1;

pVel = 8<;

AbsoluteTimingA
DoA9

p = ParallelTable@DensityMatrix@sysD ��. NDSolve@8eqs �. values �. v ® vi, inits<,

DMVariables@sysD, 8t, 0, 1.5<, Method ® 8"StiffnessSwitching"<,

AccuracyGoal ® 6, PrecisionGoal ® 6DP1T, 8D, startFreq, stopFreq, ∆f<D;

DoA8deltaI = ToString@DIndexD;

ToExpression@"pD" <> deltaID@t_D = pPDIndexT;<,

9DIndex, 1,
stopFreq - startFreq

∆f
+ 1=E;

excStatePop = TableA8HdeltaI - 1L ∆f + startFreq,

Mean@Table@ToExpression@"pD" <> ToString@deltaIDD@tD, 8t, 0, 1.5, 0.1<DD<,

9deltaI, 1,
stopFreq - startFreq

∆f
+ 1=E;

pVel = Append@pVel, excStatePopD;

If@Mod@vi, 1000D � 0, Print@viDD;=, 8vi, startV, stopV, ∆V<E;E

Li7D1DensityMatrixVelDistADMThesis.nb  3
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Doppler Distribution

dopDist@v_D := ã
-

v2

Α2 �. values

Sum the excited state populations over the velocity class

AbsoluteTimingAexcStatePopV = TableA9pVelP1TPdeltaITP1T,

SumAdopDist@vI ∆V + startVD pVelPvITPdeltaITP2TPjTPjT, 8j, 9, 16<,

9vI, 1,
stopV - startV

∆V
+ 1=E + SumAdopDist@vI ∆V + startVD pVelPvITPdeltaITP2TPjTPjT,

8j, 9, 16<, 9vI, 2,
stopV - startV

∆V
+ 1=E=, 9deltaI, 1,

stopFreq - startFreq

∆f
+ 1=E;E

85.5273162, Null<

ListPlot@8Table@8excStatePopV0PiTP1T, 10 excStatePopV0PiTP2T<, 8i, 1, 100<D,

excStatePopV<, PlotRange ® All, Joined ® TrueD

-500 -400 -300 -200 -100

0.2

0.4

0.6

0.8

Density Matrix Function formed from the Interplation for the above list

ΡFn = InterpolationATableA9pVelP1TPdeltaITP1T,

SumAdopDist@vI ∆V + startVD pVelPvITPdeltaITP2T, 9vI, 1,
stopV - startV

∆V
+ 1=E +

SumAdopDist@vI ∆V + startVD pVelPvITPdeltaITP2T, 9vI, 2,
stopV - startV

∆V
+ 1=E=,

9deltaI, 1,
stopFreq - startFreq

∆f
+ 1=EE

4   Li7D1DensityMatrixVelDistADMThesis.nb
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Plot@8ΡFn@DDP9TP9T, ΡFn@DDP10TP10T, ΡFn@DDP11TP11T, ΡFn@DDP12TP12T, ΡFn@DDP13TP13T,

ΡFn@DDP14TP14T, ΡFn@DDP15TP15T, ΡFn@DDP16TP16T<, 8D, -500, -100<, PlotRange ® AllD
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Calculates the Elements of the Fluorescence Matrix for Detection at angle Θ relative to z axis. 

 Excitation is assumed along x - axis.  So, Θ = 0 means the excitation light is polarized perpendicular to the direc-
tion of detection.  The fluorescence is broken down into components polarized in the x - z plane and components
polarized in the y direction.  The sum of the two is used to define the total fluorescence matrix.

This calculates the relative transition strengths for the fluorescence matrix for the decay light polarized in the x - z
plane

fullWEMatrixFnXZPlane@Θ_D =

1,
2

HCos@ΘD WignerEckart@sys, 8Dipole, 1, -1<DL -
1,
2

HCos@ΘD WignerEckart@
sys, 8Dipole, 1, +1<DL + Sin@ΘD WignerEckart@sys, 8Dipole, 1, 0<D .

TransposeA 1,
2

HCos@ΘD WignerEckart@sys, 8Dipole, 1, -1<DL -

1,
2

HCos@ΘD WignerEckart@sys, 8Dipole, 1, +1<DL +

Sin@ΘD WignerEckart@sys, 8Dipole, 1, 0<D E �.

ReducedME@1, 8Dipole, 1<, 2D ® 1 ��. values;

This calculates the relative transition strengths for the fluorescence matrix for the decay light polarized in the y
direction

fullWEMatrixFnY =

ä,
2

HWignerEckart@sys, 8Dipole, 1, -1<D + WignerEckart@sys, 8Dipole, 1, +1<DL .

TransposeA
-ä,

2
HWignerEckart@sys, 8Dipole, 1, -1<D + WignerEckart@sys, 8Dipole, 1, +1<DL E �.

ReducedME@1, 8Dipole, 1<, 2D ® 1 ��. values;

Adds the two flurescence matrices, zeroing out the ground-state elements.
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fluoresOperator@Θ_D = Table@If@i > 8 && j > 8,

fullWEMatrixFnXZPlane@ΘDPiTPjT + fullWEMatrixFnYPiTPjT, 0D, 8i, 1, 16<, 8j, 1, 16<D;

Fluorescence if only the light polarized in the x-z plane is detected

fluoresOperatorXZ@Θ_D =

Table@If@i > 8 && j > 8, fullWEMatrixFnXZPlane@ΘDPiTPjT, 0D, 8i, 1, 16<, 8j, 1, 16<D;

Fluorescence if only the light polarized in the x-z plane is detected

fluoresOperatorY@Θ_D =

Table@If@i > 8 && j > 8, fullWEMatrixFnYPiTPjT, 0D, 8i, 1, 16<, 8j, 1, 16<D;

Fluorescence Function

fluoresFn@D_, Θ_D = Chop@Tr@fluoresOperator@ΘD.ΡFn@DD ��. valuesDD;

fluoresYFn@D_, Θ_D = Chop@Tr@fluoresOperatorY@ΘD.ΡFn@DD ��. valuesDD;

fluoresXZFn@D_, Θ_D = Chop@Tr@fluoresOperatorXZ@ΘD.ΡFn@DD ��. valuesDD;

Results

F=2 to F’ Transitions

GraphicsGridA99Plot@8fluoresFn@D, 0D<, 8D, -500, -100<, PlotRange ® All, PlotStyle ® 8Red<,

PlotLegend ® "Θ=0", LegendShadow ® None, LegendPosition ® 80.4, 0.25<,

LegendSize ® 80.4, 0.25<, LegendBorder ® NoneD,

PlotA9fluoresFnAD, 51
Π

180
E=, 8D, -500, -100<, PlotRange ® All,

PlotStyle ® 8Blue<, PlotLegend ® "Θ=54.7o", LegendShadow ® None,

LegendPosition ® 80.4, 0.25<, LegendSize ® 80.4, 0.25<, LegendBorder ® NoneE,

PlotA9fluoresFnAD,
Π

2
E=, 8D, -500, -100<, PlotRange ® All,

PlotStyle ® 8Green<, PlotLegend ® "Θ=
Π

2
", LegendShadow ® None,

LegendPosition ® 80.4, 0.25<, LegendSize ® 80.4, 0.25<, LegendBorder ® NoneE==E
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