HARVARD UNIVERSITY
Graduate School of Arts and Sciences

DISSERTATION ACCEPTANCE CERTIFICATE

The undersigned, appointed by the
Department of Physics

have examined a dissertation entitled

Dissipation of Magnetic Energy in Collisionless Accretion Flows

presented by Michael Edward Rowan

candidate for the degree of Doctor of Philosophy and hereby
certify that it is worthy of acceptance.

Signature /\Z 4‘/@ //% ﬂv ,\U;D/

[
Typed name: Professor Masahiro Nfcﬁi, Chair

Signature P ) M OAT M O

Typed name: Professor Ramesh Narpyan, Co-Chair

Signature /g:o’lzf/éf 9 ;Z/\

Typed name: Professor Douglas Finkbeiner

Date: August 26, 2019






Dissipation of Magnetic Energy in Collisionless
Accretion Flows

A DISSERTATION PRESENTED
BY
MICHAEL ROWAN
TO
THE DEPARTMENT OF PHYSICS

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
IN THE SUBJECT OF
PHysics

HARVARD UNIVERSITY
CAMBRIDGE, MASSACHUSETTS
Avugust 2019



©2019 — MICHAEL ROwAN
ALL RIGHTS RESERVED.



Dissertation adviser: Professor Ramesh Narayan Michael Rowan

Dissipation of Magnetic Energy in Collisionless Accretion Flows

ABSTRACT

In a series of investigations, we explore magnetic dissipation in collisionless accretion flows of
black hole (BH) coronae. We study energy partition between electrons and protons via magnetic
reconnection for the idealized geometry of antiparallel reconnection, and develop an electron heat-
ing prescription, motivated by the results of fully-kinetic particle-in-cell (PIC) simulations, which
depends on plasma f; (the ratio of proton thermal pressure to magnetic pressure) and magneti-
zation oy, (the ratio of magnetic energy density to enthalpy density). We extend the study of
antiparallel reconnection to the more general case of ‘guide field’ reconnection, in which an out-of-
plane component of magnetic field B, is superposed on antiparallel reconnecting field lines (with
magnitude By); we study the dependence of energy partition between electrons and ions on plasma
parameters [, oy, the guide field strength b, = B, /By, the initial electron-to-ion temperature
ratio Tuo/Tip, and the ion-to-electron mass ratio, mi/me; we consider mass ratios up to the re-
alistic value, m;/me = 1836. We develop a general prescription for electron irreversible heating
efficiency via magnetic reconnection as a function of 3, oy, bg, Teco/Ti0, and m;/me, and we explore
with guiding center formalism the mechanism of electron heating in guide field reconnection. We
study the Kelvin-Helmholtz (KH) instability with linear stability analysis, magnetohydrodynamic
simulations, and PIC simulations; for a test case, we explore magnetic dissipation and heating
in KH-induced reconnection. We implement the Esirkepov (2001) method of current deposition,
as a way of reducing numerical heating in our PIC experiments. This work addresses the crucial

question of dissipation of magnetic energy in collisionless accretion flows of BH coronae, and shows
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that KH-induced magnetic reconnection may both heat particles and accelerate particles into a

power-law energy tail.
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1. Introduction

Magnetic reconnection is believed to play a central role in some of the most violent
plasma phenomena observed, including solar flares, coronal mass ejections, magnetic
storms in the Earth’s magnetosphere, and sawtooth crashes in tokamaks. (Le et al.,
2009)

Magnetic reconnection often leads to explosive release of energy and is thought to be

operative in space, laboratory, and astrophysical plasmas. (Liu et al., 201/)

Magnetic reconnection is an important fundamental plasma process involving a rapid
change of magnetic topology and often leading to a violent release of magnetic energy.
(Uzdensky, 2011)

Magnetic reconnection drives the release of magnetic energy in explosive events such
as disruptions in laboratory experiments, magnetic substorms in the Farth’s magneto-

sphere and flares in the solar corona. (Shay et al., 2007)

These are the opening lines from a few journal articles about magnetic reconnection (Dungey,
1953), and numerous others begin similarly. The ‘violent’ and ‘explosive’ capacity of reconnection
is quoted so often that repeating it borders on platitude. By briefly reviewing the details of a
particularly severe instance of a reconnection-induced solar storm, we may redouble our convictions
about the explosive power of reconnection.

The Halloween solar storms of 2003 were some of the most energetic solar storms ever recorded.
Two to three years after solar max (i.e. the timeframe in which solar activity such as coronal mass
ejections, sunspots, solar irradiance, etc., reaches the local maximum of its ~11 year solar cycle; see
Fig. 1.1), which is typically a period of declining magnetic activity on the Sun, it was surprising
that 17 intense sunspots were observed in the span of just a few weeks from mid-October to early
November (NASA, 2008). A large fraction of these flared on October 28", releasing ~6.2 x 1034
GeV of electromagnetic energy (Mozer & Pritchett, 2010); this is the energy equivalent of more

than 20 mass-extinction-sized meteors, or around 400x the cumulative world energy consumption



from 1830 to 2019. Astonishingly, up to 50% of the magnetic energy that is dissipated during a
solar flare can manifest as accelerated electrons (Mozer & Pritchett, 2010).1

The day after these flares erupted, the corresponding coronal mass ejection reached the Earth,
battering its magnetic field and inducing currents in the Earth’s northern latitudes (Mozer &
Pritchett, 2010). This led to power outages in Sweden, and forced air-traffic controllers to reroute
flights, so as to avoid communication deadzones and reduce exposure to the geomagnetically induced
radiation (NASA, 2008; Mozer & Pritchett, 2010). NASA would later report that more than half
of its near-Earth and space science missions were damaged or affected by the solar storm (NASA,

2008).

o measurements
| ---- October 28", 2003

w
o
o

N
o
o

100}

number of sunspots

1825 1850 1875 1900 1925 1950 1975 2000
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Figure 1.1: Number of sunspots vs. time (in years) from 1818-2017. Measurements denote the yearly
average of daily measurements, and error bars denote the standard deviation computed from daily mea-
surements over the corresponding year. Sunspot data are publicly available from the World Data Center
SILSO, Royal Observatory of Belgium, Brussels.

The average magnetic field in the Sun’s corona is around 1 G, and within sunspots is measured
to be many times larger, of order 4000 G (Livingston et al., 2006). While known with less certainty,
average magnetic fields in the extreme environment of supermassive black hole (BH) coronae (i.e.,

the gas far above and below the midplane of the BH accretion disk) and relativistic jets are expected

to be of order 100 G (Yuan & Narayan, 2014; Johnson et al., 2015; Dallilar et al., 2017);2 one can

!The efficiency with which magnetic reconnection can heat and accelerate particles will prove to be crucial
in our later discussion of collisionless accretion flows around black holes.
2The field is even stronger around stellar mass BH.



imagine that, in analogy with the Sun, there are regions of intense magnetic field, thousands of
times stronger than the average, ~100 G. Given the efficiency with which magnetic reconnection,
in the context of solar physics, is known to convert magnetic energy into kinetic energy (heating
and acceleration of particles, and bulk motion of plasma), it is natural to ask what may be the role
of magnetic reconnection in dissipating magnetic energy in BH coronae; this is one of the main
questions explored in this thesis.

A realistic description of magnetic dissipation via reconnection, and electron heating in particular,
is vitally important in generating models that may be reliably compared with observations of black
holes (The EHT Collaboration et al., 2019). Two of the primary targets of the Event Horizon
Telescope (EHT) are Messier 87 (MS87), with its distinctive jet, and Sagittarius A* (Sgr A*), the
supermassive BH at the center of the Milky Way. These active galactic nuclei (AGN) differ from
other distant AGN in that they radiate at only a small fraction of the Eddington limit. This
puzzling property can be explained within the framework of advection-dominated accretion flows
(ADAFs, Narayan & Yi (1995a); also known as radiatively inefficient accretion flows, RIAFs (Stone
et al., 1999; Igumenshchev et al., 2003; Beckwith et al., 2008)).3

In the ADAF model, the accreting plasma (i.e., ionized gas) onto the BH is unable to cool
efficiently, so the plasma heats up to very high temperatures and puffs up into a geometrically
thick, optically thin disk. Because of the low gas density, the plasma is accurately modeled as a
‘collisionless’ gas, meaning that the mean free path in the plasma is much larger than the dynamical
timescale, i.e. Coulomb collisions may be neglected. Despite the absence of Coulomb collisions,
energy transfer amongst particle constituents (and also between particles and the electromagnetic
field) of the plasma may proceed through various plasma processes, e.g. reconnection.

Dissipation of magnetic energy, and the associated particle heating, in collisionless, magnetized

3An ‘accretion flow’ refers to the material orbiting a massive central body; in our case, the material is
plasma, and the central body we consider is a black hole.



gas is controlled by fundamental plasma physics, which is absent in scale-free theories such as
magnetohydrodynamics (MHD), and variants thereof. This limitation of traditional MHD simula-
tions is potentially severe. Without first-principles, fully-kinetic modeling of magnetic dissipation
in plasma, and the corresponding energy partition between electrons and protons, conventional
MHD simulations have no way of resolving the plasma microphysics that is crucially important to
controlling the heating of electrons, the particles in BH accretion flows which produce the radiation
that is ultimately compared with simulated radiation based on general relativistic MHD models
of accretion flows (see Fig. 1.2 for an illustration). The situation may be improved by provid-
ing a sub-grid prescription for electron heating, motivated by fully-kinetic modeling of magnetic

reconnection. Developing such as prescription is a main goal of this thesis (See Chs. 2 and 3).

AR
YRR,
a2,

Figure 1.2: Electrons (blue circles) can produce radiation (wavy lines) through (A) synchrotron radia-
tion, where the electron gyrates about a magnetic field line (indicated by the dashed blue arrow; the mag-
nitude is By) and (B) inverse Compton scattering, wherein a low-energy photon gains energy via scatter-
ing off a higher-energy electron; because electrons produce the radiation that is ultimately observable on
Earth, a detailed understanding of the microphysics of electron heating in collisionless accretion flows is
critical when comparing models of BH accretion flows with observations.

1.1 Sweet-Parker magnetic reconnection: a simplified analytic model
For the moment, let us abstract away the (important and complicated) contextual details of re-

connection in BH coronae, and focus on a simplified analytical description of reconnection, the



Sweet-Parker model (Sweet, 1958; Parker, 1957). While the Sweet-Parker model is imperfect (e.g.,
it predicts a ‘slow’ reconnection rate which is incompatible with experimentally observed reconnec-
tion rates in the solar atmosphere, Earth’s magnetosphere, and laboratory plasmas), a good deal
of physical intuition may be gleaned from the Sweet-Parker model.

We consider a reconnection layer with half-length L and half-thickness 0 (see Fig. 1.3). Plasma in
the ‘inflow’ (equivalently, ‘upstream’) regions, corresponding roughly to the blue and red areas, flow
along +y with speed vy, into the current sheet (green region), and then is ejected along +z (along
the ‘outflows’ or ‘downstream’) with speed vout. The magnetic field points along —x in the upper
part of the domain, and along +x in the lower half. The mass density in the upstream is piy; as a
simplification, we assume equal inflow and outflow densities. The configuration shown in Fig. 1.3 is
assumed to be time-independent, as well as symmetric and isotropic along the inflows and outflows.
With this intuitive picture of magnetic reconnection, we will derive the scaling of the outflow speed
vout With the strength of the magnetic field By, and mass density pi, in the upstream. We can
start by noting that mass-flux is conserved from the inflow boundary to the outflow boundary. The
mass (per unit length in z per time) advected into the current sheet is 2L X 2p;,viy, and the mass
advected out of the current sheet is 20 X 2pinvout, S0 by mass-flux conservation, the aspect ratio of

the reconnection layer governs the ratio of inflow to outflow speeds,

0 Vin

L Vout

(1.1)

We get a second equation by balancing the magnetic energy advected across the inflow with the

kinetic energy advected across the outflow,

. B2
5 Umle/?E87T). (1.2)
L 5 PinVoyy
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Figure 1.3: Setup for the Sweet-Parker model of magnetic reconnection. Magnetic fields of opposite po-
larity (shown by blue and red; the magnitude is Bj,) permeate plasma in the inflow regions. In the tran-
sition region between the magnetic fields, current flows in the out-of-plane direction (z), consistent with
Ampere’s law. Dissipation of magnetic energy occurs in the ‘current sheet’ (green region), modeled as a
box of dimension 20 by 2L. Inflowing plasma along the +y directions is ejected along the outflow direc-
tions £z, as magnetic energy in the upstream is converted to kinetic energy.

Using Eqgs. 1.1 and 1.2, we get a scaling law for the outflow speed with inflow magnetic field and

mass density:

Vout ~ = (1.3)

which we identify as the (nonrelativistic) definition of Alfvén speed. We can introduce the magne-
tization in the upstream, oy, = B2 /(47pinc?®), then the scaling law Eq. 1.3 says that the outflow

velocity scales with magnetization as

Yout  /om. (1.4)

c

The Sweet-Parker model yields the physically intuitive result that as the reconnection upstream



becomes more magnetized, the outflow velocity increases, which is intuitive because as the magneti-
zation increases in the upstream, more free magnetic energy is available to be dissipated as kinetic
energy in the outflows. Using an argument that is similar to the above, and assuming also that
the plasma is force free in the upstream (i.e. Ei, ~ (vin/c)Bin), the Sweet-Parker model provides

a scaling for the reconnection electric field? F,e. in the current sheet (Parker, 1957),

)
Erec ~ ZUin\/47TPinC2- (1.5)

While simple and elegant, the Sweet-Parker model of magnetic reconnection is not realistic.
Parker originally proposed that the scaling laws could explain the fast magnetic dissipation observed
in solar flares, but soon realized that they predict a reconnection rate that is too low (Parker, 1963).
The physical limitation of the model is that the reconnection rate (Eq. 1.5) depends on the aspect
ratio of the current sheet, §/L; as the aspect ratio decreases, the inflow speed decreases, because
conservation of mass-flux advected across the inflow and across the outflow demands v, /vVous ~ 0/L,
and the outflow speed is fixed according to Eq. 1.3 (Cassak et al., 2017).

Searching for a physical, quantitative, and precise understanding of the scaling laws Eqs. 1.3
and 1.5 has consumed decades worth of research in magnetic reconnection. A battery of evidence
from observational, theoretical, and computational studies suggests that the reconnection rate is
‘universally’ (Parker, 1973; Borovsky et al., 2008; Comisso & Bhattacharjee, 2016; Cassak et al.,

2017)

~0.1. (1.6)

This scaling is especially relevant when considering reconnection in an environment that is not

4The value E,e is often referred to in the literature as the ‘reconnection rate’



directly accessible via observation, e.g. BH coronae, and implies that reconnection efficiently dissi-
pates magnetic energy, even in the collisionless accretion flows surrounding black holes.
1.2 Particle-in-cell simulation
In Sec. 1.1, we reviewed the details of a simplified, time-independent model of reconnection; while
it provides physically reasonable scalings, it is known to be, at a quantitative level, incompatible
with the fast energy conversion rates observed in actual reconnection events (e.g., solar flares or
the Earth’s magnetosphere). For the full time-dependent, nonlinear problem of reconnection, com-
puter simulations, and in particular particle-in-cell (PIC) simulations (Hockney & Eastwood, 1988;
Birdsall & Langdon, 1991), have proven enormously useful in providing quantitatively accurate
models of reconnection (Birn et al., 1957; Shay et al., 2014; Liu et al., 2017), thereby providing
also a framework in which to address the reason for puzzing aspects of reconnection, such as the
apparently universal value of the reconnection rate, and the fraction of dissipated magnetic energy
partitioned to electrons vs. protons (Eastwood et al., 2013; Yamada et al., 2015; Hoshino, 2018).

There are several comprehensive texts (Hockney & Eastwood, 1988; Birdsall & Langdon, 1991)
and review papers (Dawson, 1983; Buneman et al., 1993; Cai et al., 2003; Pritchett, 2003; Lapenta,
2015) which cover the PIC method. Here, we review briefly the fundamentals of PIC, but refer the
reader to the previously mentioned sources for a more complete description.

Formally, the PIC method is a numerical approach to solving the full seven-dimensional (three

spatial dimensions x; three momentum dimensions p; one time dimension t) collisionless Vlasov-



Maxwell system, i.e.

df(x,p,t) _

SR =, (1.7)
V- E =4mp, (1.8)
V-B=0, (1.9)
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&

c ot
The first equation Eq. 1.7 is the collisionless Boltzmann equation, and Eqgs. 1.8-1.11 are the
Maxwell equations; the charge density p and current density j here are computed as moments of
the distribution function f. Expanding the total derivative in Eq. 1.7, and employing the Lorentz
force law, the collisionless Boltzmann equation is

9fs
ot

s _ 0, (1.12)
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where the subscript s refers to the particle species (in BH coronae, this can be electrons or protons),
and ¢ is the charge of the particle; for each particle species in the plasma, there is a Boltzmann
equation of the form of Eq. 1.12.

To solve the Vlasov-Maxwell system Eqgs. 1.7-1.11, PIC simulations time evolve discretized
chunks of the phase space of f(x,p,t), each of which corresponds to many physical particles (these
are often referred to as ‘macro’ or ‘super’ particles). Time evolution of macroparticles proceeds in

a series of steps:

1. Particle positions and momenta are stepped forward in time x(t) — x(t + At), p(t) —
p(t + At), according to the Lorentz force law;

2. According to the distance moved and the charge of the particle, current is deposited on the



grid;

3. Deposited current is treated as a source term in the Maxwell equations, and used to update

the (discretized) electromagnetic field;

4. Electric and magnetic fields, defined at discrete points on the computational grid, are used

to interpolate the value of the electric and magnetic fields at (continuous) particle locations.

The procedure described in steps 1-4 above is known as the ‘PIC loop’ (Buneman, 1959; Dawson,
1962), and in principle may be repeated for as long as computational resources allow. In practice,
one must also consider effects such as ‘numerical heating’ (Birdsall & Maron, 1980; Birdsall &
Langdon, 1991; Melzani et al., 2013), which corresponds to a nonphysical increase in the plasma
temperature, and may occur for different reasons, including violation of energy conservation that
is inherent in certain standard PIC algorithms (including the Boris (1970) pusher®), and also
instabilities associated with coupling between plasma modes and the discretized grid (e.g. ‘Finite
Grid Instability,” see Birdsall & Langdon (1991)). Adequate control of numerical heating and
related numerical instabilities is crucial to obtaining reliable results with PIC simulations, and
is an omnipresent consideration for all of the simulation work presented in this thesis; Ch. 6 is
devoted to the exploration of numerical heating, and a current deposition scheme that can reduce
its impact.

In the last few years, crucial advances in numerical methods and high-performance computing
hardware have enabled PIC simulations to model collisionless plasmas up to the long time durations
and large length scales required of astrophysical problems. PIC simulation is one of the main tools
we use to study BH coronae in Chs. 2-5.

As a prelude to later detailed discussions, we show in Fig. 1.4 a representative PIC simulation

of magnetic reconnection. The setup here is similar to that shown in Fig. 1.3, with magnetic fields

5Despite violating energy conservation, the Boris pusher is a stable algorithm, in the sense that with
sufficient spatio-temporal resolution, the associated numerical heating, which occurs in a predictable manner,
may be adequately controlled.
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of opposite polarity threading plasma in the top and bottom parts of the domain (see panel A);
however, since Fig. 1.4 corresponds to a PIC simulation, the full time-dependent reconnection prob-
lem is solved, and the electromagnetic field and particles evolve according to the Vlasov-Maxwell
system (Eqns. 1.7-1.11). Panel B shows how the magnetic field (black lines) have rearranged at
a later time in the simulation, capturing details of reconnection that are absent in the simplified
description of Sec. 1.1.

1.2.1 Particle-in-cell simulation with TRISTAN-MP

To simulate collisionless plasma, we use the electromagnetic PIC code TRISTAN-MP (Spitkovsky,
2005), a massively parallel descendant of the PIC code TRISTAN originally developed by Buneman
(1993). TRISTAN-MP uses a finite-difference scheme to solve the Maxwell equations. Electric and
magnetic fields are staggered on a Yee (1966) mesh. Standard particle position and momentum
integrators, i.e. the Boris (1970) and Vay (2008) pushers are implemented (for the vast majority of
simulations presented in Chs. 2-5, we use the Vay algorithm, which we find is more accurate in our
setups than the Boris pusher). A three-point digital filter is used to smooth currents deposited by
particles onto the computational grid, which we find significantly improves control over numerical
heating in our simulations. Two versions of the code exist, one in which the computational domain
is decomposed along x, and another along both x and y. Message Passing Interface (MPI) Standard
is used for parallel communication on the decomposed domain. Output data from TRISTAN-MP are
saved at user-selected intervals via Hierarchical Data Format 5 (HDF5) libraries.

In Appendix A, we present measurements and data on the parallel scalability of TRISTAN-MP.
In these tests, we find that our code shows excellent parallel scalability as the number of compute
nodes increases.

To buttress the simulational capabilities of TRISTAN-MP, we developed a graphical user interface

for visualization and analysis of TRISTAN-MP data; this tool is described in Appendix B.
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Figure 1.4: Tllustration of reconnecting magnetic field lines (shown by black). (A) Initially anti-parallel
configuration of magnetic field; the red region indicates magnetic field pointing in the 4z direction, and
the blue region indicates magnetic field pointing in the —z direction. (B) After reconnection is triggered,
magnetic field lines ‘break apart’ and ‘reconnect,” which leads to particle heating, acceleration of particles,
and bulk motion of plasma along the outflows (£x directions). The central region of the domain corre-
sponds to an ‘X-point,” called so because the shape of the magnetic field there resembles an ‘X.

1.3 Outline

In this chapter, we introduced the fundamental plasma process of magnetic reconnection, provided
motivation as to the importance of magnetic dissipation via reconnection in collisionless accretion
flows of black holes, and discussed how such extreme environments may be studied using particle-

in-cell simulations of collisionless plasma. In the following chapters, we explore several important
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questions at the intersection of pure plasma physics, and black hole astrophysics.

In Ch. 2, investigate energy partition in the idealized case of antiparallel reconnection, and
develop a prescription for electron heating which depends on only a few plasma parameters. Next,
in Ch. 3, we study a more general configuration called ‘guide field’ reconnection; we study the
scaling of energy partition with different plasma parameters, and develop a general prescription
for electron heating via magnetic reconnection; we explore also the mechanisms responsible for
electron heating in guide field reconnection. In Ch. 4, we investigate the Kelvin-Helmholtz (KH)
instability via linear stability analysis and magnetohydrodynamic simulation, with an eye towards
the possibility of KH-induced magnetic reconnection. Next, in Ch. 5, a companion to Ch. 4,
we continue our exploration of the KH instability with PIC simulations; for a test case, we study
magnetic dissipation induced by the KH instability. Finally, in Ch. 6, we study the Esirkepov
(2001) algorithm of current deposition, as a method of increasing numerical control in our PIC
experiments. The work in this thesis addresses the important question of how magnetic energy is
dissipated in the collisionless plasma of BH accretion flows, and suggests further lines of inquiry

regarding the connection between the KH instability and magnetic reconnection.
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2. Electron and proton heating in trans-relativistic
magnetic reconnection

Text in this chapter was originally published in:
AplJ, 850, 29, (2017; Rowan, M., Sironi, L., & Narayan, R.).

2.1 Abstract

The coronae of collisionless accretion flows, such as Sgr A* at our Galactic center, provide a unique
setting for the investigation of magnetic reconnection. Here, protons are generally non-relativistic
while electrons can be ultra-relativistic, a regime that is largely unexplored. By means of two-
dimensional particle-in-cell simulations, we investigate electron and proton heating in the outflows
of trans-relativistic (i.e., o, ~ 0.1, where the magnetization o, is the ratio of magnetic energy
density to enthalpy density) anti-parallel reconnection. We explore the dependence of the heating
efficiency on mass ratio (up to the realistic value), magnetization o,,, proton plasma f; (i.e., the
ratio of proton thermal pressure to magnetic pressure), and electron-to-proton temperature ratio
T./Ti. For both electrons and protons, heating at high 5; tends to be dominated by adiabatic
compression (“adiabatic heating”), while at low §; it is accompanied by a genuine increase in
entropy (“irreversible heating”). For our fiducial o,, = 0.1, we find that at 5; < 1 the irreversible
heating efficiency is nearly independent of T, /T; (which we vary from 0.1 up to 1). If T,/T; = 1,
the fraction of inflowing magnetic energy converted to electron irreversible heating decreases from
~ 1.6% down to ~ 0.2% as f3; ranges from f; ~ 1072 up to 3 ~ 0.5, but then it increases up to ~ 3%
as (B; approaches ~ 2. Protons are heated much more efficiently than electrons at low and moderate
Bi (by a factor of ~ 7), whereas the electron and proton heating efficiencies become comparable
at B ~ 2 if To/T; = 1, when both species start already relativistically hot. We find comparable
heating efficiencies between the two species also in the limit of relativistic reconnection, when the

magnetization exceeds unity. Our results have important implications for the two-temperature
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nature of collisionless accretion flows, and may provide the sub-grid physics needed in general
relativistic MHD simulations.

2.2 Introduction

The ultra-low-luminosity source at the center of the Milky Way, Sagittarius A* (Sgr A*), is thought
to be powered by accretion onto a supermassive black hole. Sgr A* radiates well below the Ed-
dington limit and there is strong evidence that the accreting gas can be described as an advection-
dominated accretion flow (ADAF, also referred to as a radiatively inefficient accretion flow, RIAF)
(Narayan & Yi, 1994, 1995b,a; Abramowicz et al., 1995; Narayan & McClintock, 2008; Yuan &
Narayan, 2014). In ADAFs, the disk is geometrically thick and optically thin. Additionally, the
plasma is predicted to be two-temperature for several reasons: first, in the ADAF configuration, the
density of accreting gas is low enough that Coulomb collisions between electrons and protons are
extremely rare on accretion timescales, so that the species become thermally decoupled. Second,
electrons radiate more efficiently than protons. Lastly, relativistic electrons are heated less than
non-relativistic protons when subjected to the same adiabatic compression. For all these reasons,
the plasma is expected to be two-temperature, with protons significantly hotter than electrons
(Narayan & Yi, 1995b; Yuan et al., 2003).

Despite the above arguments, the two-temperature gas may be driven to a single-temperature
state by kinetic processes, such as reconnection and instabilities (Quataert et al., 2002; Riquelme
et al., 2012, 2015; Sironi & Narayan, 2015; Sironi, 2015; Werner et al., 2016). To capture the
effects of these plasma processes, one requires a fully-kinetic description, which can be achieved
via numerical techniques such as particle-in-cell (PIC) simulations. In principle, such ab initio
simulations can be used to provide the necessary sub-grid physics that, to date, cannot be captured
in magnetohydrodynamic (MHD) simulations (e.g., Ressler et al., 2015, 2017b; Ball et al., 2016,

2017; Chael et al., 2017; Sadowski et al., 2017).
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In supermassive black hole accretion flows, the ratio of ion thermal pressure to magnetic pressure,

_ 8mnokpTi

Bi = B (2.1)

(where ng is the ion number density, kp is Boltzmann’s constant, 7; is the ion temperature, and By
is the magnitude of the magnetic field) is expected to vary in the disk midplane in the range 3; ~ 10
— 30 (See Fig. 1 of Sadowski et al., 2013). However, in plasma far above and below the midplane,

the “corona,” the system is expected to be magnetically dominated, such that 8; < 1. Here, the

dissipation of magnetic energy via reconnection can result in particle heating, acceleration, and
bulk motion.
Even in the magnetized corona, the magnetization,

Bj

i= ; 2.2
dngm;c? (2:2)

is generally small, i.e., 0y < 1. Electron heating by reconnection in the non-relativistic limit
(01 < 1) has been studied extensively, both theoretically and by means of PIC simulations, in
the context of the solar wind, Earth’s magnetotail, and laboratory plasmas (Hoshino et al., 2001;
Jaroschek et al., 2004; Loureiro et al., 2013; Schoeffler et al., 2011, 2013; Shay et al., 2014; Dahlin
et al., 2014; Daughton et al., 2014; Li et al., 2015; Haggerty et al., 2015; Numata & Loureiro, 2015;
Le et al., 2016; Li et al., 2017a). Though less commonly studied, relativistic reconnection (i.e.,
o; > 1) in electron-proton plasmas has also received some attention in recent years (Sironi et al.,
2015; Guo et al., 2016).

The collisionless plasma in hot accretion flows around black holes provides a peculiar environment
for reconnection, since o; < 1, a regime that falls between the well-studied non-relativistic and ultra-

relativistic regimes. For f; ~ 1 and o; < 1, protons are generally non-relativistic, yet electrons

~
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can be ultra-relativistic. This territory remains largely unexplored, in terms of both simulation
and theory, and studies have only recently begun to probe reconnection in this parameter regime
(Melzani et al., 2014; Werner et al., 2016).

The aim of this work is to explore particle heating via magnetic reconnection in the trans-
relativistic regime o; < 1. We study heating in the outflows of anti-parallel reconnection (i.e., in
the absence of a guide field perpendicular to the alternating fields) by means of fully-kinetic PIC
simulations, choosing inflow parameters appropriate for the coronae of collisionless accretion flows.
We present the electron and proton heating as a function of mass ratio (up to the physical value),
inflow magnetization, ion plasma f; and temperature ratio Tt /7;.

We show that heating in the high-5; regime is primarily dominated by adiabatic compression (we
shall call this contribution “adiabatic heating”), while for low f; the heating is genuine, in the sense
that it is associated with an increase in entropy (“irreversible heating”). At our fiducial o; ~ 0.1,
we find that for §; < 1 the irreversible heating efficiency is independent of Ti/7; (which we vary
from 0.1 up to 1). For equal electron and proton temperatures, the fraction of inflowing magnetic
energy converted to electron irreversible heating at realistic mass ratios decreases from ~ 1.6%
down to ~ 0.2% as f3; ranges from f; ~ 1072 up to f3; ~ 0.5, but then it increases up to ~ 3% as
0Bi approaches ~ 2. Protons are heated much more efficiently than electrons at low and moderate
Bi (by a factor of ~ 7), whereas the electron and proton heating efficiencies become comparable
at B ~ 2 if To/T; = 1, when both species start already relativistically hot. We find comparable
heating efficiencies between the two species also in the limit of relativistic reconnection, when the
magnetization exceeds unity. The unifying feature of these two cases (i.e., high magnetization, and
high 5; at low magnetization) is that the scale separation between electrons and protons in the
reconnection outflows approaches unity, so the two species behave nearly the same. Motivated

by our findings, we propose an empirical formula (Eq. 2.34) that captures the magnetization and
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plasma-; dependence of the electron heating efficiency (normalized to the overall electron 4+ proton
heating efficiency) over the whole range of magnetization and f; that we explore.

We also measure the inflow speed (i.e., the reconnection rate) as a function of the flow conditions,
finding that for our fiducial magnetization o, = 0.1 it decreases from vy, /va =~ 0.08 down to 0.04
as f3; ranges from 3; ~ 1072 up to 3; ~ 2 (here, va is the Alfvén speed). Similarly, the outflow speed
saturates at the Alfvén velocity for low (i, but it decreases with increasing f; down to vout/va ~ 0.7
at B; ~ 2. The inflow (outflow, respectively) speed is independent of T /T; at low [, with only a
minor tendency for lower (higher, respectively) speeds at larger Tt /T; in the high-g; regime.

The organization of the paper is as follows. In Section 2.3, we provide details about the simulation
setup and parameters. In Section 2.4, we discuss our technique for extracting from PIC simulations
the heating efficiencies. In Section 2.5, we discuss the dependence of the reconnection rate, the
outflow speed and the electron and proton heating efficiencies on the flow conditions. We conclude
in Section 2.6, with a summary and discussion.

2.3 Simulation setup

We use the electromagnetic PIC code TRISTAN-MP to perform fully-kinetic simulations of recon-
nection (Buneman, 1993; Spitkovsky, 2005). We employ two-dimensional (2D) simulations, but all
three components of velocity and electromagnetic fields are tracked. Our setup is similar to that
described in Sironi & Spitkovsky (2014). The initial field configuration is illustrated in Fig. 2.1.
From the red to the blue region, the polarity of the inflow magnetic field reverses, as shown by
the white arrows. An out-of-plane current, in the green region, satisfies Ampere’s law for the curl
of the magnetic field. The reconnection layer is initialized in Harris equilibrium, with a magnetic

field profile B = By tanh(27y/A) %x. We focus on anti-parallel reconnection, postponing the study
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Figure 2.1: Schematic depiction of the reconnection layer initial configuration. Red and blue regions
show magnetic field lines of opposite polarity. A hot, over-dense component of plasma (green region) bal-
ances the magnetic pressure outside the current sheet.

of guide field effects to a future work. The field strength is parameterized via the magnetization,
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where By is the magnitude of the magnetic field in the inflow region, w = (pe + pi)c? + Fele + it
is the enthalpy density per unit volume, and pe = meng, pi = ming, Ye, Ji, and ue, u; are the
rest mass densities, adiabatic indices, and internal energy densities, respectively, of electrons and
protons. Here, ng is the electron number density in the inflow region, m, and m; are the electron
and proton masses. The definition of magnetization in Eq. 2.3 reduces to Eq. 2.2 in the limit of
non-relativistic temperatures, but for relativistic particles the enthalpy in ., properly accounts for
the relativistic inertia.

In all runs, we set the current sheet thickness to be A = 40 ¢/wpe, Where ¢/wp. is the electron

skin depth,

2 -1/2
wpe = 1] 208 (1+ be ) (2.4)

Me

is the electron plasma frequency. Here, 6, = kpTc/ mec? is the dimensionless electron temperature,
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whereas e is the electric charge. The size of the computational domain in the x direction is L, =
4318 ¢/wpe, which is large enough to resolve both electron and proton heating physics (see Appendix
2.A, where we study the convergence of our results with respect to the domain size). While L,

in units of ¢/wpe remains fixed across our simulations, the domain size in units of the proton skin

depth

- —1/2 . 1/2
e L (RS I (P (25)

Wpi  Wpe\ Me Ye — A —1

increases as electrons become more relativistic (see Tab. 2.1). Here, 6; = kT /mic2 is the dimen-
sionless proton temperature.

We typically employ periodic boundary conditions along the x direction, but we have tested that
our main results do not change when using outflow boundary conditions, similar to those described
in Sironi et al. (2016). With the latter, it is possible to study the dynamical evolution of the
reconnection system over multiple Alfvénic crossing times, whereas the evolution of a periodic sim-
ulation is limited to a few Alfvénic crossing times, before the periodic boundaries start affecting the
reconnection physics. We compare the results of simulations with outflow and periodic boundaries
in Appendix 2.B.

Fresh plasma, described by a Maxwell-Jiittner distribution, is introduced at two moving injectors.
Each injector recedes from y = 0 at the speed of light, and the simulation domain is enlarged
when the injectors reach the boundaries, so that the injectors may continue receding in the +¥
directions. This strategy — described in more detail in Sironi & Spitkovsky (2011) — ensures
that the domain includes all causally connected regions throughout the evolution of the system,
while making efficient use of the available memory and computing time. Additional computational

optimization is achieved by allowing the injectors to periodically “jump” backwards (toward y = 0),
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removing all particles beyond the injectors and resetting the electromagnetic fields to their initial
values (Sironi & Spitkovsky, 2011).

A hot, over-dense population of particles is initialized in the current sheet to balance the magnetic
pressure from outside. These particles have temperature kgT¢s/ mic? = oy /2n, where 7 is the over-
density relative to the inflowing plasma; we use n = 3. Reconnection is triggered at the initial time
by cooling by hand the over-dense population in the middle of the current sheet (z,y) = (0,0).
This causes a local collapse of the layer, leading to the formation of an X-point, after which the
system evolves self-consistently (Sironi et al., 2016).

Adequate resolution of the electron skin depth c/wpe is required for accuracy and stability of
PIC codes. We use 4 cells per electron skin depth, and fix ¢ = 0.45 cells/timestep, which is
less than required by the Courant-Friedrichs-Lewy condition in 2D. The time resolution of our
simulations is then At ~ 0.1 w;el, which properly captures the physics at electron scales. For two
cases (i = 0.0078 and (3 = 2, with the same o,, = 0.1 and T,/T; = 1), we have tested for
convergence by varying the spatial resolution (we have tested with ¢/wpe = 2 or 8 cells), which
has the effect of changing also the temporal resolution (we still fix ¢ = 0.45 cells/timestep). For
both choices of (;, our results are essentially the same (see Appendix 2.C, where we study the
convergence of our results with respect to the spatial resolution of the electron skin depth).

For simulations with f; = 2, we use 64 particles per cell (Nppc), whereas Ny, = 16 at lower
Bi. We have found that these values of Ny, are sufficient to keep numerical heating under control,
even for T, /T; < 1. We have extensively tested the impact of numerical heating in simulations
with 8; = 2 for several values of Ny, in some cases up to Nppe = 256; see Appendix 2.D for some
discussion.

In our parameter scan (Tab. 2.1), we fix 0y, and study the reconnection physics as a function of

Bi and T, /T;. We choose to fix oy, rather than oy, given that the parameter space we probe involves
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B 0.0078  0.031 0.13 050 20
Be 0.00078 0.0031  0.013 0.050  0.20
0; 0.00041 0.0016 0.0066 0.028  0.16
Oc 0.0010  0.0041  0.017 0.070  0.39
v; 0.00061 0.0024  0.010 0.043  0.27
e 0.0015 0.0062  0.025 0.11 0.78
o; 010 010 010 011 0.5
T. /T, 010 010 010 010 0.10
Nppe 16 16 16 16 64
¢/wpi 20 20 20 19 16
La[c/wpi] 860 870 870 890 1100
ID BI0] B[1] B[2] B[3] B[4]
B; 0.0078  0.031 0.13 050 20
Be 0.0023 0.0094 0038  0.15 0.60
0; 0.00041  0.0016 0.0066 0.029  0.18
fe 0.0031  0.012 0050 021 1.3
v; 0.00061  0.0025  0.010 0.044  0.32
e 0.0046  0.019 0079 039 3.3
o; 010 010 010 011 017
Te/T; 030 030 030 030 0.30
Nppe 16 16 16 16 64
¢/wpi 20 20 19 17 11
La[c/wpi] 870 870 890 1000 1600
ID clo] C[1] c[2] cC[38 C[4]
B 0.0078  0.031 013 050 20
Bi 0.0078  0.031 013 050 20
0; 0.00041 0.0016 0.0067 0.031  0.39
Oe 0.010  0.041 017 077 9.9
v; 0.00061 0.0024  0.010 0.048  0.79
Ve 0.015  0.064  0.30 1.8 29
o; 010 010 010 012 038
To/ T, 1.0 1.0 1.0 1.0 1.0
Nppe 16 16 16 16 64
¢/wpi 20 19 17 12 50
L [c/wpi] 870 890 990 1500 3400

Table 2.1: Initial parameters for the m;/m, = 25 simulations with our fiducial o, = 0.1. The proton skin
depth ¢/wp;, calculated according to Eq. 2.5, is expressed in number of cells. The definition of the various
quantities is in Section 2.3. Simulation sets A, B, and C differ by the initial temperature ratio, with
T./T; = 0.1,0.3, and 1, respectively. From left to right, 5; increases. We fix the mass ratio m;/me = 25,
magnetization o, = 0.1, electron skin depth ¢/wpe = 4 cells, and domain size L, = 4318 c/wpe. We also
perform a number of additional simulations, up to the realistic mass ratio m;/me, = 1836 and with higher
magnetizations (o, = 0.3, 1, 3, 10), as described in Section 2.3.
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relativistic particles whose thermal contribution to the inertia is non-negligible (see Eq. 2.3). For

a constant oy, the Alfvén velocity

VA [ ow
— 2.6
c 140y’ (2:6)

remains fixed across our simulations. The reconnection layer is evolved for ~ 1 Alfvénic crossing
time (tA = Lg/va), which for our reference magnetization of o, = 0.1 and L, = 4318 c/wpe
corresponds to ¢ ~ 14000 w;el.

The focus of our investigation is the so-called trans-relativistic regime of reconnection, hence we
select o, = 0.1 as our fiducial magnetization, and we vary §; from 0.0078 to 2. Additionally, we
study the effect of the initial electron-to-proton temperature ratio T, /T; on the reconnection physics.
For each value of f;, we run three simulations with 7, /7; = 0.1,0.3, and 1. Our choice of initial
parameters, both physical (o4, £i, and T, /T;) and computational (Nppc, ¢/wpe), is summarized in
Tab. 2.1. Other derived physical parameters in the inflow region, namely the electron plasma 8, =
BiT./T;, the dimensionless proton and electron temperatures 6; = kpTi/mic? and 0, = kgT,/mec?,
the dimensionless internal energy per particle for protons and electrons v; = u;/ngmic? and v, =
Ue/nomec?, and the ratio o; of magnetic pressure to rest mass energy density, are also included.
In addition to the simulations listed in the table, which employ mass ratio m;/m, = 25, we also
investigate mass ratios m;j/me = 10,50, and 1836 for 3; in the range 5 x 10~% — 2 (with fixed
ow = 0.1 and a fixed electron-to-proton temperature ratio T./7; = 1). With realistic mass ratios
and T./T; = 1, we also explore the fi-dependence of the heating efficiency at higher values of the

magnetization: o, = 0.3, 1, 3 and 10.
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Figure 2.2: Time evolution of a representative low-f; simulation (A[0] in Tab. 2.1), with 8 = 0.0078
and T./T; = 0.1. The snapshots show number density of electrons in units of the initial density at (a):

t = 3713w, ~ 0.25ta; (b): t = 7200w, ~ 0.50t4; (c): t = 10688w,' ~ 0.75ts. We show the whole
dimension of the box in z, and only a small portion close to the center in y. A characteristic feature of
this and other low-£; simulations is the presence of secondary magnetic islands, i.e., structures like those at
x & 300 ¢/wpe and x = —900 ¢/wpe (panel (c)). These are to be distinguished from the large primary island
at © ~ £2200 ¢/wpe, whose properties depend on choices at initializiation. As the primary island grows, it
will eventually inhibit further accretion of magnetic flux and the reconnection process will terminate.

2.4 Technique for extracting the heating efficiency

In this section, we discuss our method of extracting the heating efficiency from PIC simulations.
First, in Section 2.4.1, we discuss the time evolution of the reconnection layer for two representative
cases at low and high ;. Then, in Section 2.4.2, we describe the identification of inflow (upstream)
and outflow (downstream) regions. Lastly, in Section 2.4.3, we isolate the irreversible heating,

i.e., the part associated with a genuine increase in entropy, from the reversible heating induced by

adiabatic compression.
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Figure 2.3: 2D plot of the ratio of top-to-total particle density, niop /Mo, for a representative simulation
with 8; = 0.0078 and T./T; = 0.1 (A[0] in Tab. 2.1) at time ¢ ~ 11000w,} ~ 0.8¢4. The green and
black contours show the boundaries of the regions we use to calculate the downstream and upstream tem-
peratures, respectively. The box edges at the interface between upstream and downstream change as the
system evolves, and are calculated according to Eqgs. 2.7 and 2.8. Particle mixing serves as a tracer for the
downstream region. Particles from the top (y > 0) of the domain are tagged; as they enter the reconnec-
tion layer, they mix with particles from the bottom (y < 0) of the domain. The reconnection downstream
is identified via the mixing fraction nep/Notr, and a choice of the threshold rqown, as in Eq. 2.7.

2.4.1 Time evolution of the reconnection layer

To illustrate the time evolution of the reconnection layer, we show in Fig. 2.2 a few snapshots of
density from a representative simulation (A[0] in Tab. 2.1) with 5 = 0.0078 and T,/7; = 0.1. We
plot the 2D profile of the number density in units of the initial value, n/ng. In each panel, we show
only a small fraction of the domain in the y direction (we present only the region closest to the
current sheet), and the full extent of the domain in x. White lines with arrows show magnetic field
lines.

Panels (a)-(c) show the time evolution of the system over ~ 1 Alfvénic crossing time. By
removing by hand the plasma pressure at the center of the current sheet (z ~ 0), we trigger a
local collapse of the layer, forming an X-point. After the formation of the central X-point, two
reconnection “wavefronts” are pulled outwards in the £% directions by the magnetic tension of the
field lines, and the fronts recede from the center at close to the Alfvén speed. In panels (a), (b),
and (c), the wavefronts are located at z ~ 400, 1100, and 1800 ¢/wp., respectively, corresponding

to the innermost (i.e., closest to x = 0) locations of the large semi-circular red/yellow density blobs.
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Figure 2.4: (a): 1D profile along the y direction of top-to-total particle density ratio (solid line) and
bottom-to-total ratio (dashed line) in a slice at = & 1000 ¢/wpe, at time ¢ ~ 8400w, ! = 0.60¢4. The pro-
files are from the same simulation we show in Fig. 2.3 (with 8; = 0.0078 and T,/T; = 0.1). Vertical dotted
lines indicate the locations in & where the top-to-total density ratio is between 0.3 and 0.7 (at y ~ —25
and 25 ¢/wpe, respectively). Between the vertical dotted lines (i.e., in the region we define as the reconnec-
tion downstream), mixing has efficiently occurred. (b): Proton and electron temperature profiles in the
same region. In between the vertical dotted lines, the temperature profiles are nearly flat.
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The fronts carry away the hot particles initialized in the current sheet. With periodic boundary
conditions, this leads to the formation of a primary island at the boundary of the simulation domain
(in Fig. 2.2(c), located at x ~ £2200 ¢/wp.). The primary island continues to accrete plasma as the
system evolves, but eventually it grows so large that further accretion of magnetic flux into the
layer is inhibited, and reconnection stops.

The primary island shows the hottest electron temperatures. Here, electron heating might be due
in part to reconnection, but also in part to weak shocks at the interface between the reconnection
outflow and the island. In addition, the plasma conditions in the island are sensitive to our arbitrary
choice for the current sheet initialization. For these reasons, we choose not to focus on the heating
physics in the primary island.

In this paper, we focus exclusively on the outflow (i.e., before the the plasma reaches the primary
island; see also Shay et al. (2014), in the context of non-relativistic reconnection), shown by the
green region between the two wavefronts in Fig. 2.2. In Section 2.4.2; we detail the steps we take
to avoid contamination of our temperature measurements by the primary island.

As the two reconnection fronts recede from the center, plasma flows into the reconnection layer
and particles are heated and accelerated as a bulk, flowing along +%X toward the domain boundaries.
The dense (green) region in between the two wavefronts is the reconnection outflow. A key feature
of low-3; simulations is the formation in the reconnection exhausts of secondary islands due to the
secondary tearing instability, e.g., Fig. 2.2(c) at  ~ 300c¢/wpe and =~ —900 c¢/wpe (Daughton
& Karimabadi, 2007; Uzdensky et al., 2010). Between each pair of secondary islands, there is a
secondary X-point, e.g., at * & —1000 ¢/wpe. We discuss the structure of the reconnection layer as

a function of §; in Section 2.5.1.
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2.4.2 Upstream and downstream identification

We now describe how we determine which computational cells in the simulation domain belong to
the upstream (or, inflow) and downstream (or, outflow) regions. We identify downstream cells by
using a particle mixing criterion between the two sides of the current sheet. Particles that originate
above y = 0 (top of the domain) are tagged, to distinguish them from particles originating below
y = 0 (bottom of the domain).

In Fig. 2.3, we show the ratio of top-to-total number density. Away from the current sheet, i.e.,
in the blue and red regions, there is no mixing between the two populations. Particles from the two
sides of the current sheet get mixed as they enter the reconnection layer; the region with the greatest
amount of mixing is shown in white/light-yellow. We compute the ratio of top-particle density nop
to total-particle density niot = n (including particles from both top and bottom) in each cell. If this
ratio in a given cell exceeds a chosen threshold 74w, and is below the complementary threshold,

ie.,

n
P 1 — rgowns (2.7)

Tdown <
Ntot

then the cell is counted as one where plasma has reconnected (i.e., the cell belongs to the recon-
nection downstream). This technique is similar to that used in Daughton et al. (2014). In our
analysis, we choose Tqown = 0.3, but we have verified that the identification of the reconnection
region, and therefore the heating efficiencies that we extract, do not significantly depend on this
choice. For rgown in the range 0.1 — 0.3, the heating efficiencies typically differ only by ~ 15%. The
choice rgown = 0.3 is restrictive enough to exclude contamination by the upstream region. This is
especially important for high f;, where, even if the electron gyrocenter is located in a cell that is

safely part of the downstream, if the cell is close to the interface between downstream and upstream,
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the particle gyro-motion may temporarily lead this “downstream” electron to the upstream side. If
Tdown Were to be too small, the region where the electron motion extends into the upstream might
be incorrectly counted as part of the downstream, biasing our temperature estimates toward lower
values. Our choice of rgown is to some extent arbitrary, but we have found that a relatively large
value like rqown = 0.3 is suitable for identifying the genuine reconnection downstream.

In Fig. 2.4, we show 1D plots of the density fraction of tagged particles and the temperature
profiles along the y direction, in a slice located at & ~ 1000 c/wpe. In panel (a), we show the
profiles of the ratio of top- and bottom-density to total density, denoted by solid and dashed lines,
respectively, at time ¢ ~ 8400 wrjel ~ 0.60ta. Between the two vertical dotted lines, the ratio of top-
to-total density ranges between 0.3 and 0.7, as required to satisfy our mixing criterion. As shown
in panel (b), both the electron (blue) and the proton (red) temperature in the region between the
vertical lines are remarkably uniform, proving that our mixing criterion can confidently capture
the reconnection downstream.

The upstream region is identified via

Ntot TNtot

(ntOp < rup> or <nt0p >1-— rup> , (2.8)

and we choose ry, = 3 X 107°. As before, this definition avoids contamination of the upstream
region by any “downstream” particles that leak out of the current sheet. In practice, a buffer zone
with a width on the order of a few tens of ¢/wp. is established between the regions we identify as
upstream and downstream.

While Eq. 2.7 (Eq. 2.8, respectively) identifies the whole reconnection outflow (inflow, respec-
tively), we enforce an additional constraint on the downstream and upstream regions that we employ

to extract our heating efficiencies. We select downstream regions far enough from the central X-
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point that the electron and proton outflow bulk velocities have saturated, and also that the electron
and proton temperatures have reached their asymptotic values. At the same time, we select these
regions to be far enough from the boundaries to avoid contamination from the material inside the
primary island, and only capture the genuine reconnection outflow. The downstream region that
satisfies these constraints (identified by the green contours in Fig. 2.3) varies for different simula-
tions: for f; < 2 it is located at a distance of ~ 630 c/wpe from the center, whereas for §; = 2
it is at ~ 350 ¢/wpe from the center (as we show below, the primary island tends to be larger at
higher ;). The extent of the downstream region across the layer (i.e., along y) is determined by
the mixing criterion in Eq. 2.7, while the length along the layer is fixed at ~ 170 ¢/wpe (see the
green contours in Fig. 2.3). The corresponding upstream values are measured at the same distance
from the center of the layer, within the black contours in Fig. 2.3. Their exent along the y direction
does not significantly affect our results.

2.4.3 Characterization of heating

In this section, we describe our assessment of particle heating. First, in Section 2.4.3.1, we describe
our calculation of rest-frame internal energy and temperature. Next, in Section 2.4.3.2, we define
ratios that characterize the total amount of heating. Finally, in Section 2.4.3.3, we provide a more
detailed analysis of the heating physics by isolating the effect of a genuine entropy increase (which
we call “irreversible heating”) from the contribution of adiabatic compression (giving “adiabatic
heating”).

2.4.3.1 Temperature calculation

We measure the total particle energy density in the simulation frame, then extract the corre-

sponding fluid-frame internal energy and temperature, by employing the perfect, isotropic fluid
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approximation, i.e.

" = (e +p)U'U” — pg", (2.9)

where TH is the stress-energy tensor of the fluid, e is the rest-frame energy density, p is the
pressure, U* is the fluid dimensionless four-velocity, and g"" is the flat-space Minkowski metric.

The rest-frame energy density is the sum of rest-mass and internal energy densities, i.e.

e =nmc® +u (2.10)
o 2 p

= — 2.11

nmc” + P ( )

where 71 is the rest-frame particle number density, « is the internal energy density, and 4 is the
adiabatic index. The dimensionless internal energy per particle in the fluid rest frame vs may be

expressed as

(TSO/nSmSC2 — Tyl

Vg = y
° 1+§/8(F2_1)

(2.12)

where T is the total energy density in the simulation frame, ng is the lab-frame particle number
density, 'y is the Lorentz factor corresponding to the local fluid velocity, 45 is the adiabatic index,
and the subscript s = e, 1 refers to the particle species.

To make use of Eq. 2.12, we need to express the adiabatic index 45 as a function of the internal
energy per particle, so that the equation may be solved iteratively. For a plasma described by a

Maxwell-Jiittner distribution with dimensionless temperature 6,

Ima(y,0s) o< yv/v2 — lexp (—v/0s) , (2.13)
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where « denotes the particle Lorentz factor, the dimensionless internal energy is given by

b — ST v (y,05)dy
’ floo Iami(7, 0s)dy

(2.14)

We have numerically evaluated the integral on the right hand side for a range of temperatures and
thereby produced interpolating tables for 4,(vs) and 6s(vs), to be used for finding v, in Eq. 2.12.

Egs. 2.9 and 2.12 assume that the stress-energy tensor is diagonal and isotropic in the fluid
frame. We have explicitly tested this assumption by measuring all the components of the stress-
energy tensor in our computational domain. By boosting into the local fluid frame, we can calculate
all the components of the pressure tensor. We find that the off-diagonal components are generally
negligible. As regard to the diagonal components, we quantify the degree of anisotropy with the
temperature ratios Typp/Ttot, Tyy/Ttot, and Ts./Tior, where Tioy = (Typw + Tyy + 132)/3. For an
isotropic fluid, Tyz/Ttot = Tyy/Ttot = T%2/Tiot = 1. For electrons in the reconnection downstream,
we find that these ratios typically lie in the range Tyy/Tiot = Ts./Tior ~ 0.9 — 0.95 and Ty /Tior =
1.2 — 1.1 (see Appendix 2.E for further discussion, including the dependence of the anisotropy on f;
and T./T;). We find greater anisotropy along the outflow direction X than either § or z. This is in
qualitative agreement with the findings of Shay et al. (2014), who demonstrated that the electron
pressure tensor in the immediate reconnection exhausts is anisotropic, with the component parallel
to the local magnetic field larger than the perpendicular component.

As an additional test, we have also measured the temperature and internal energy via an explicit
boost of the stress-energy tensor into the fluid rest frame, and compared the results to those
computed by employing the perfect-fluid approximation as described above. We find that the
disagreement between the two methods is only of order ~ 1%, providing a posteriori a justification

for the perfect-fluid assumption.
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2.4.3.2 Total heating

The main focus of our investigation is particle heating by reconnection, and how the heating ef-
ficiency depends on the upstream parameters. From each simulation, we extract a dimensionless
ratio Mye tot, Which we define as

Mue tot = Ue,down — Ue,up. (215)
’ aimi/me

The numerator is the difference in dimensionless internal energy per electron between downstream
and upstream, while the denominator represents (apart from a factor of two) the available magnetic
energy per electron in the upstream, in units of the electron rest mass energy (= Bg JATnomec?).
The ratio Mye tot is then a measure of the efficiency of reconnection in converting available magnetic
energy to electron heating. Alternatively, the efficiency parameter may be phrased in terms of the
dimensionless temperature,

ee,down - He,up (2 16)

MTe,tot = )
o imi/ Me

as in Shay et al. (2014). We define analogous ratios for protons as

Muitot = —Ui’dowr;‘_ D, (2.17)
1
and
-
M oy, = 2, (2.18)
1

For the results presented below, we average the dimensionless internal energy and temperature

appearing in the above equations over time, starting at ~ 0.3 Alfvénic crossing times (or equivalently,

33



~ 4500 wgel), when the two reconnection wavefronts — and with them, the particles initialized in
the current sheet — have moved beyond the region that we use for our computations (green and
black boxes in Fig. 2.3). We typically time-average our results over an interval of ~ 0.3 Alfvénic
crossing times.

2.4.3.3 Adiabatic and irreversible heating

When gas is adiabatically compressed, its internal energy increases while its entropy remains con-
stant. The reconnecting plasma may experience such adiabatic heating, since the downstream
region is denser than the upstream (see Fig. 2.2). However, adiabatic heating is not a genuine
signature of the conversion of field energy into particle energy. We isolate the irreversible heating
generated by magnetic field dissipation by subtracting out the adiabatic heating from the total
particle heating.

The predicted internal energy per particle in the downstream resulting from adiabatic compres-

ad

s down for species s) is calculated from the upstream internal energy

sion alone (which we shall call v
per particle v ,p, the upstream rest-frame number density 7, ., and the downstream rest-frame

number density 7is down using the second law of thermodynamics for constant entropy,
dUs = —psdV (2.19)

From the ideal gas equation of state, the pressure is ps = nskpTs = (95 — 1)us. Using the relation

Us/V = us = vsigmsc?, we can integrate Eq. 2.19 to obtain

ad

s,down 1 ﬁs down
. dus—log ( > — 0. 2.20
/’Us,up (’Y(US) - 1)US Nsup ( )

We compute the argument of the logarithm in Eq. 2.20 as the ratio of downstream to upstream

rest-frame density, spatially averaged over the regions marked in Fig. 2.3. The lower bound of the
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integral vsyp is computed as a density-weighted spatial average in the selected upstream region.

The adiabatic index 44(vs) is tabulated as discussed above. We numerically solve Eq. 2.20 for the

predicted downstream dimensionless internal energy per particle U?ﬂlown resulting from adiabatic
compression. We refer to the corresponding dimensionless temperature as Hgf(liown. We call the

difference between the initial and the predicted dimensionless temperature or internal energy per

ad

s,down

ead

particle due to adiabatic compression, i.e., Al g = 025 .,

—Osup and Avg aq = v — Vs up, @S
the “adiabatic” component of heating.
The irreversible heating, which is associated with a genuine increase in entropy, is the residual

between the total heating and the adiabatic heating:

Aes,irr = (es,down - es,up) - Ags,ada (2'21)

A'Us,irr = (Us,down - 'Us,up) - A’Us,ad' (222)

As in Section 2.4.3.2, we introduce efficiency ratios to characterize the irreversible and adiabatic

heating of electrons,

Ab irr AB d
MTe,irr = $a MTe,ad = i7 (223)
aymi/me oymi/me
Ave; Av
Mue,irr = ﬂ) Mue,ad = &) (224)
aimi/me oimi/me
and define analogous ratios for protons
Ab; ; A
MTi,irr = 1,11"1" MTi,ad = 1,3d7 (225)
g i
Av;; Av;
Mui,irr = l,lrrv Mui,ad = ﬁ- (226)
i (25}
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Figure 2.5: 2D structure at ¢ = 11250w, ~ 0.75¢ from a representative low-3; simulation (A[0] in
Tab. 2.1) with 8; = 0.0078, 0, = 0.1, T,/T; = 0.1 and m;/m. = 25. We present 2D plots of (a): particle
density in units of the upstream initial value, n/ng, with overplotted magnetic field lines; (b): dimension-
less electron temperature, f; (c): logarithm of the magnetic energy fraction, eg = B2/8mngm;c?; (d):
inflow velocity, in units of Alfvén speed vi,/va = v - §/va; (e): outflow velocity, in units of Alfvén speed
Vout/Va = V - X/va. We show the full extent of the domain in the x direction (L, = 4318 c/wpe), and
only a small fraction of the box close to the current sheet in the y direction. The primary island, which
contains the particles initialized in the current sheet, can be seen at the boundaries (x = 2200 ¢/wpe).
As shown in panel (a), the density reaches n/ng &~ 2.3 in the bulk of the outflow, with sharp increases up
to n/ng ~ 5 in the core of secondary islands (e.g., at = —1000 ¢/wpe and = 300 ¢/wpe). The primary
island has a high density throughout its interior, n/ng ~ 5. Similarly, the temperature (panel (b)) is uni-
form 6, ~ 0.1 in the bulk of the outflow, with spikes up to 6. ~ 0.25 at the center of secondary islands.
The primary island has a temperature 8, ~ 0.15 throughout its interior. In panel (c), we show that the
magnetic energy fraction ep is extremely small in the outflow, eg < 0.01. The inflow velocity in panel

~

(d) is a fraction of the Alfvén limit |vi,|/va =~ 0.08, and the outflow velocity in panel (e) approaches the
Alfvén limit, |vous|/va = 1.

2.5 Results
In this section, we describe our main results, focusing on the dependence of the heating efficiency

on the plasma conditions. First, in Section 2.5.1, we present the dynamics of the reconnection layer,
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Figure 2.6: 2D structure at ¢ = 11250w,} ~ 0.75¢5 from a representative high-f; simulation (A[4] in
Tab. 2.1) with 8 = 2, 0, = 0.1, T/T3 = 0.1 and m;/m. = 25 (i.e., apart from f;, with the same pa-
rameters as in Fig. 2.5). The panels show the same quantities as in Fig. 2.5. As shown in panel (a), the
density is roughly n/ng = 1.2 in the bulk of the outflow, which is only slightly larger than the upstream
density. In the primary island, the density reaches n/ng ~ 4. The electron temperature (panel (b)) is
nearly uniform in the reconnection exhausts (i.e., within a distance of &~ 700 ¢/wpe from the central X-
point), with 6, ~ 0.6. Within the primary island, the temperature reaches 6, =~ 0.8. In panel (c), we
present the logarithm of magnetic energy fraction ep, showing that the reconnection layer is weakly mag-
netized (eg < 0.01). Panel (d) shows that the inflow velocity is nearly uniform in the upstream, with a
typical value |viy|/va = 0.04. Panel (e) shows that the outflow velocity in the reconnection exhausts is

Uout|/va = 0.6. At the center of the primary island, x ~ +2200 ¢/wpe, the plasma from the reconnection
P
outflows comes to rest, |vout|/va = 0.
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Figure 2.7: Comparison between a low-5; (left column, with §; = 0.0078, A[0] in Tab. 2.1) and a high-
Bi (right column, with 8 = 0.5, A[3] in Tab. 2.1) simulation, at time ¢ = 9225 wp_el ~ 0.65ts. In both
cases, o, = 0.1, T,/T; = 0.1 and m;/me = 25. (a),(d): 1D profiles along = (averaged along y within the
reconnection downstream, as identified by Eq. 2.7) of proton (red) and electron (blue) outflow velocity in
units of the Alfvén speed, vout/va; (b),(e): 1D profiles along = of the upstream (magenta) and downstream
(green) dimensionless electron temperature, 6, (the two slabs in between the vertical dotted lines indicate
the regions we use to calculate the downstream and upstream temperatures); (c),(f): 2D plots of log(,).
In both the low- and high-£; cases, the spatial profiles of outflow velocity and electron temperature show
that the downstream region reaches a quasi-steady state.
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Figure 2.8: Time evolution of total (Mre to; black solid), irreversible (Mre iv; red dashed), and adia-
batic (Mre aa; blue dashed) heating efficiency, for a low-g; simulation (top panel, with 8; = 0.0078) and
a high-3; case (bottom panel, with 8; = 2). In both cases, o, = 0.1, To/T; = 0.1 and m;/m. = 25. The
heating efficiencies are measured starting at ¢ ~ 5000 wgel7 at which point the two reconnection wavefronts
recede past the location of the downstream region used for our computations (shown in Fig. 2.3 with the
green contours). For the low-5; case, the total heating efficiency oscillates around Mp, ~ 0.04, and it is
dominated by genuine/irreversible heating (panel (a)). For high §;, the total heating efficiency saturates at

a smaller value, Mp, =~ 0.016. Here, adiabatic and irreversible heating equally contribute (panel (b)).
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and describe the main differences between low-8; and high-5; cases, for our fiducial magnetization
ow = 0.1 and mass ratio m;/me = 25. Next, in Section 2.5.2, we discuss the inflow and outflow rates
as a function of 5; and T, /T;. Then, in Section 2.5.3, we show the dependence of electron and proton
heating on f; and T, /T, still for our fiducial magnetization o, = 0.1 and mass ratio m;/me = 25.
In Section 2.5.4, we extend our results for 7,/7; = 1 and o, = 0.1 up to the physical mass
ratio mj/me = 1836, emphasizing the fi-dependence of the particle heating efficiencies. Finally,
in Section 2.5.5, we show how the heating physics changes when the magnetization o, extends
above unity (i.e., in the regime of ultra-relativistic reconnection), for mass ratio m;/me = 1836 and
temperature ratio T /7T; = 1.

2.5.1 Reconnection physics as a function of 5;

The physics of reconnection shows a marked difference between low- and high-5; regimes. In Figs.
2.5 and 2.6, we present various fluid quantities for representative low- and high-8; simulations,
respectively (5; = 0.0078 in Fig. 2.5 and §; = 2 in Fig. 2.6). In both cases, o, = 0.1, To/T; = 0.1
and mi/me = 25. At t = 11250w; ~ 0.75tA, we show 2D plots of: (a) the total density in the
simulation frame in units of the initial density, n/ng; (b) the dimensionless electron temperature
f.; (c) the magnetic energy fraction eg = B?/8mngmic?; (d) the inflow velocity vi,/va = v - §/va
(va is the Alfvén speed), and (e) the outflow velocity vou/va = v - X/vaA.

A striking difference between the simulations shown in Figs. 2.5 and 2.6 is that, while the
reconnection outflow at high (; is nearly homogeneous, a number of secondary magnetic islands
appear at low i (see Fig. 2.5(a)). The secondary islands are over-dense, and at their center they
can reach temperatures a few times larger than the bulk of the outflow (Fig. 2.5(b)). They also
correspond to peaks in magnetic energy (Fig. 2.5(c)).

The difference in electron temperature between inflow and outflow regions is more pronounced

in the low- than in the high-f; case (compare Figs. 2.5(b) and 2.6(b)). However, as we demonstrate
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in Section 2.5.3, the fraction of available magnetic energy converted into total electron heating is
roughly comparable between the two cases.

The inflow velocity vi,/va = v - §/va is shown in panel (d). For low-3;, the inflow velocity is
|vin|/va = 0.08. It is nearly uniform in the upstream, with the exception of the regions ahead of
the secondary islands, where the velocity reverses its sign relative to the ambient inflow (see, e.g.,
Fig. 2.5(d) at * ~ —1100 ¢/wpe). This reversal occurs as the secondary island moves along the
outflow direction, pushing aside the inflowing plasma. For high-f3;, the plasma inflow is remarkably
uniform, with |vin|/va = 0.04, which is half the value of the low-; case. The inflow velocity at high
B; shows no reversals near the reconnection exhausts, as there are no secondary islands.

The outflow velocity vout/va = v - X/va is shown in panel (e). For low-g;, the outflow speed
nearly reaches the Alfvén limit, |voys|/va =~ 1, whereas for high-3; it approaches a smaller value,
|vout|/va = 0.6. For both low and high f;, the outflow velocity is nearly uniform in the reconnection
exhausts, but it drops close to the periodic boundaries at x ~ +2200, as the outflowing plasma
accretes onto the primary island.

We show in Fig. 2.7 a direct comparison between one low-f3; and one high-3; simulation. The
left column in Fig. 2.7 refers to f; = 0.0078 (the same as in Fig. 2.5), whereas 5 = 0.5 for the
right column. In both cases, o, = 0.1, To/T; = 0.1 and m;j/me = 25. In the top row, we show the
profile along z of the outflow velocity, for protons (red) and electrons (blue). We find that electrons
move slightly faster than protons in the vicinity of the central X-point, but at larger distances the
speeds of the two species are the same, and they saturate at a fixed fraction of the Alfvén limit.
We show in the middle row of panels the z-profile of the dimensionless electron temperature 6., in
the upstream (magenta) and downstream (green). The secondary magnetic islands present in the
low-f; simulation (panel (c)) are correlated with spikes in the downstream electron temperature

(see the peak at z &~ —500 ¢/wpe in Fig. 2.7(b)). Aside from the temperature spikes at low f;, the
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two panels in the middle row of Fig. 2.7 demonstrate that, far enough from the central X-point,
the electron temperature is nearly uniform.

To estimate the reconnection heating efficiency, we measure the downstream temperature in the
two slabs delimited by the vertical dotted lines in Fig. 2.7(b) and (e) (more precisely, within the
green contours in Fig. 2.3). The time evolution of the total electron heating efficiency Mre tot, of the
adiabatic contribution Mr, ,q and of the irreversible component My i, are shown in Fig. 2.8 with
black, dashed blue and dashed red lines, respectively. The top panel refers to a low-5; simulation
with §; = 0.0078, whereas the bottom panel refers to the high-5; case f; = 2. In both cases,
ow = 0.1, To/T; = 0.1 and mj/me = 25. The horizontal axis in the figure starts from ¢ =
5000 wgel, which corresponds to the time when the two reconnection wavefronts pass beyond the
region that we employ for calculating the downstream quantities (as discussed above, after this time
the measurements are no longer affected by our choice of initialization of the current sheet).! While
the heating efficiencies are nearly constant in time for high §; (bottom panel), the temporal profiles
at low (; (top panel) present quasi-periodic modulations. They mark the passage of secondary
islands — whose temperature is typically hotter than the bulk outflow — through the region used
for our computations. To minimize the temperature variations associated with secondary islands,
we average the heating efficiencies over time, as described in Section 2.4.3.2. In doing so, the results
we obtain are a reliable assessment of the steady-state heating physics in reconnection.

Panels (a) and (b) in Fig. 2.8 also demonstrate that the fractional contributions of adiabatic and
irreversible heating to the total electron heating significantly depend on f;, as we further discuss in
Section 2.5.3. In the low-3; regime, adiabatic heating is unimportant as compared to the irreversible

part, whereas the two components are comparable at high f;.

IThis time is typically in the range t ~ 4000 — 5000 wgel, with marginal dependence on 3; and on the
initial sheet thickness A.
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Figure 2.9: For temperature ratios T,/7; = 0.1 (blue), 0.3 (green), and 1 (red), f;-dependence of (a): in-
flow velocity |vin|/va; (b): outflow velocity |vout|/va; (¢): reconnection rate |vin|/|vout|; (d): downstream
density in units of initial density in the upstream 7igown/n0; (€): width of reconnection layer 0ye.. Error
bars represent one standard deviation from the mean. The inflow velocity is averaged over a region of
length L,/3 ~ 1440 ¢/wpe in = and width 20 ¢/wpe in y, located |y|~ 100 ¢/wpe upstream of the central X-
point. We have checked that the saturation value is insensitive to the choice of averaging region. The out-
flow velocity is computed as an average over the 20 cells with the largest |v - X| located along the central
region of the outflow (|y|< 4c¢/wpe). We have tested that the resulting outflow velocity is nearly insensi-
tive to our averaging procedure. The regions used for measuring density in the upstream and downstream
are described in Section 2.4.2. The width of the reconnection layer is measured at a distance ~ 430 ¢/wpe
downstream of the central X-point. All quantities are time-averaged over ~ 0.3t4 =~ 4500 w;el. Both in-
flow and outflow velocities tend to decrease with (3;, with weak dependence on T,/T; (noticeable only at
high ;). The density compression decreases with ;. The width d,e. of the layer increases with §;, yet with
large error bars.
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2.5.2 Dependence of inflow and outflow velocity on g; and T,/T;

In Fig. 2.9, we show the dependence on (3 and T¢/T; of various fluid quantities, from a suite of
simulations with fixed o, = 0.1 and m;/m. = 25. We present the (a) inflow velocity normalized to
the Alfvén speed |vin|/va; (b) outflow velocity normalized to the Alfvén speed |vout|/va; (c) ratio of
inflow to outflow velocity |vin|/|vout|; (d) downstream rest-frame density in units of the initial density
in the upstream ngown/n0; (€) width of the reconnection region at a distance of 430 ¢/wpe from the
center of the layer. Blue, green, and red points denote simulations with upstream temperature
ratios Te/T; = 0.1,0.3, and 1, respectively.

As described in Section 2.4.3.2, the quantities we extract are time-averaged, typically over 0.3
Alfvénic crossing times, corresponding to ~ 4500 w;el. The points in Fig. 2.9 represent the time
averages, with vertical error bars indicating one standard deviation. At low f;, the inflow velocity
is |vin|/va & 0.08, independent of the upstream temperature ratio (panel (a)). In the high-5; case,
the inflow speed is smaller, |viy|/va =~ 0.04, and shows a weak dependence on the temperature ratio,
with higher temperature ratios attaining lower values of |vi,|/va.

The outflow velocity (panel (b)) nearly saturates the Alfvén limit at low §; (the Alfvén limit is
indicated with the horizontal dashed black line), whereas for high f; it is sub-Alfvénic, |vout|/va =
0.75. For low values of i, i.e., i < 0.1, the outflow velocity is nearly independent of the temperature
ratio, whereas at high 3; it shows a weak dependence on T,/7j, with higher temperature ratios
corresponding to greater outflow speeds.

The dependence of the reconnection rate |viy|/|vout| on G; and Ti./T; (panel (c)) follows from
the variations in inflow speed and outflow velocity that we have just discussed. At low f;, the
reconnection rate is |vin|/|vout|~ 0.08 regardless of the temperature ratio, whereas at high 5;, and
specifically for 8 = 2, the reconnection rate at To,/T; = 1 is |vin|/|vout|~ 0.04, only half that of

the T, /T; = 0.1 case. So, in the high-3; regime reconnection proceeds slower for hotter upstream
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electrons.

As f; increases, the plasma is less prone to be compressed during the reconnection process. As
shown in Fig. 2.9 (d), the downstream to upstream density ratio decreases as [3; increases. The value
of Tiqown /N0 is nearly independent of the upstream temperature ratio. Though the ratio 7Tigown/n0
approaches unity at high (;, this does not necessarily imply that the fractional contribution of
adiabatic heating to total heating is negligible at high f; (we demonstrate this in Section 2.5.3).

Lastly, in panel (e) we show the fi-dependence of the reconnection layer width e, in units
of the electron skin depth c¢/wpe. We measure the width across the reconnection layer, as identi-
fied by Eq. 2.7, at a distance ~ 430 ¢/wp. downstream of the central X-point. The width shows
strong variability in time at low ;, as secondary islands pass through the region employed for our
measurements (note the large error bars). Despite the uncertainty in the measurement, panel (e)
shows a consistent trend of increasing reconnection layer width ... with B;. The measured values
of drec lie in the range 25 — 50 ¢/wpe, which is apparently close to the chosen current sheet thick-
ness at initialization, A = 40 ¢/wp.. However, we demonstrate in Appendix 2.F that the measured
reconnection layer width is independent of our choice of the initial sheet thickness. It follows that
our measurement leads to a reliable assessment of the opening angle of the reconnection outflow,
~ Orec/ (430 ¢/wpe) ~ 0.1.

2.5.3 Dependence of particle heating on g; and T./T;

In Fig. 2.10, we show the §; and T¢/T; dependence of electron (panel (a)) and proton (panel (b))
dimensionless temperature, and the ratio of proton-to-electron skin depth (panel (c); see Eq. 2.5). In
each panel, solid and dashed lines indicate downstream and upstream quantities, respectively. Asin
Fig. 2.9, blue, green, and red points refer to electron-to-proton temperature ratios 7. /7; = 0.1, 0.3,
and 1, respectively. The upstream electron dimensionless temperatures lie in the range 1073 to 10,

as in Table 2.1; for protons, the dimensionless temperature in the upstream ranges from 4 x 10~*
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Figure 2.11: For upstream temperature ratios T,/7; = 0.1 (blue), 0.3 (green), and 1 (red), Si-dependence
of heating efficiencies; (a): electron total, Mretot; (b): electron adiabatic, Mre aq; (¢): electron irreversible,
Mre ivr; (d): proton total, My tot; (€): proton adiabatic, My aq; (f): proton irreversible, My iyy; (g): elec-
tron and proton total, Mre 1ot + Mri tot; (h): electron and proton adiabatic, Mye aq + Mriaq; (1): electron
and proton irreversible, Mre iy + Mriirr. The simulations shown here use a mass ratio m;/m. = 25 and
magnetization o,, = 0.1. Error bars, mostly smaller than the plotted symbols, represent one standard devi-
ation from the mean. The decomposition of total heating into irreversible and adiabatic components shows
that electron and proton heating at low [; is accompanied by an increase in entropy, while heating in the
high-5; regime tends to be dominated by adiabatic compression.
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to 0.4.

The range of temperatures in the downstream is smaller than in the upstream (compare the
solid and dashed lines in Fig. 2.10(a) and (b)). At low f;, the available magnetic energy is large
compared to the particle thermal content in the upstream, so dissipation of the magnetic field leads
to electron and proton temperatures in the downstream that are nearly independent of 5;. At high
Bi, the energy transferred from the fields to the particles is much smaller than the initial particle
thermal content, giving a minor increase of temperature from upstream to downstream. Even if the
fractional increase in temperature is extremely small at high §;, the fraction of available magnetic
energy being converted into particle heating might still be as large as at low ;. The rest of the
section addresses this question.

We show the plasma-f; and temperature ratio 7. /T; dependence of electron and proton heating
in Fig. 2.11. The simulations presented here are those referenced in Tab. 2.1, for which m;/m. = 25
and o, = 0.1. We indicate the total, adiabatic, and irreversible heating by Mre 1ot (Eq. 2.16),
Mreaq and Mreie (Egs. 2.23) for electrons, and by My oy (Eq. 2.18), Mrjaq and My (Egs.
2.25) for protons. Blue, green, and red points indicate simulations with upstream electron-to-proton
temperature ratios of 0.1,0.3, and 1, respectively. As in Section 2.5.2, filled points are the time-
averaged results of our simulations, and vertical error bars indicate one standard deviation from
the mean. The top, middle, and bottom rows show heating fractions of electrons, protons, and of
the overall fluid, respectively, which we now discuss in turn.

In Fig. 2.11(a), we show the dependence of the total electron heating efficiency Mrpe tor on fi and
T./T;. Although the initial plasma (; spans more than two orders of magnitude, and the initial
temperature ratio an order of magnitude, even the most extreme values of M 1o differ by no more
than a factor of ~ 4. The value of Mrpetor in our B < 0.5 simulations, for which electrons stay

~

non-relativistic both in the upstream and in the downstream, is ~ 0.04, which is consistent with the
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results of non-relativistic reconnection by Shay et al. (2014) for mass ratio m;/me = 25.2 As shown
by Shay et al. (2014), the electron heating efficiency in non-relativistic reconnection is expected
to decrease with increasing mass ratio; in Sections 2.5.4 and 2.5.6, we present the dependence of
the electron and proton heating fractions in trans-relativistic reconnection on m;/me, up to the
physical value.

The total electron heating fraction Mre tor is decomposed into adiabatic and irreversible com-
ponents in panels (b) and (c). By comparing the two panels, we see that most of the heating in
the low-(; regime comes from irreversible processes, i.e., it is accompanied by a genuine increase in
entropy, while heating at high 8; mostly results from adiabatic compression.

The electron adiabatic heating efficiency increases with the inflow temperature ratio Ti/T;
(Fig. 2.11(b)). The dependence is most apparent at high f;, where adiabatic heating represents
a significant contribution to the total heating. The dependence of adiabatic heating on tempera-
ture ratio can be simply understood through the adiabatic law 7/77~! = const. As electrons get

compressed from upstream to downstream, the adiabatic heating fraction can be written as?

("‘:;V“)%_l - 1] . (2.27)

As shown in Fig. 2.9(d), the ratio of downstream to initial upstream density Rfgown/no is nearly

independent of the upstream temperature ratio, so that Mreaq x Te/T; at fixed fi. Eq. 2.27 also
provides insight into the §;-dependence of adiabatic heating. It shows that, for a given temperature

ratio, the adiabatic heating efficiency would scale linearly with f;, if the compression ratio figown/n0

2In Shay et al. (2014), the magnetization was o, &~ 0.004 — 0.1. However, as long as o, < 1 and all the
species stay at non-relativistic temperatures, we expect the reconnection physics to be independent of the
flow magnetization.

3Eq. 2.27 assumes that the adiabatic index is constant as electrons pass from upstream to downstream,
which is a good approximation when electrons are ultra-relativistic in both regions (so, for high 5; and large
T./T;); still, in all the simulations used in Fig. 2.11, we find that the electron adiabatic index changes by no
more than e up — Ye,down ~ 0.1. In any case, Eq. 2.27 is presented only for illustrative purposes, and we
properly account for the effect of a variable adiabatic index in our calculation of the heating fractions.
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were to be fixed. As shown in Fig. 2.9(d), the downstream to upstream density ratio decreases
with S, approaching unity at high ;. However, the decrease of Tigown/n0 with 5; is quite shallow,
and insufficient to counteract the linear dependence on 3; in Eq. 2.27. It follows that at low ; the
effect of adiabatic heating is negligible, while at high 3; the role of adiabatic heating can be more
important than that of irreversible heating.

This statement can be further justified by considering electron energization in the diffusion region
as the main source of irreversible electron heating, following Le et al. (2016). In the diffusion region,
the electron energy will increase by €Fyecle, Where Eiec ~ 0.1(va/c)By is the reconnection electric
field (assuming a reconnection inflow rate of ~ 0.1va/c, see Fig. 2.9(a)) and /. is the distance
traveled by electrons along the electric field (along z, in our geometry). For the sake of simplicity,
let us now assume that §; is sufficiently small that w ~ nomic® and so o, ~ 0j (this is the case

for g; <

~

0.1, at our reference magnetization o,, = 0.1). The corresponding irreversible heating

efficiency can be written in the case o, ~ 07 S 1 as

14
MTe,irr ~0.1 =

1 (2.28)

which does not depend explicitly on 5;. It follows that, as long as ¢, is a weak function of ;, the
adiabatic heating efficiency in Equation 2.27, which scales linearly with 5;, will be unimportant at
low B;, whereas it will dominate over irreversible heating at high f;.

We remark that Equation 2.28 does not capture a number of important effects. First, by tracking
individual particle orbits, we have found that the in-plane components of the electric field, that we
have neglected above, can provide a significant contribution to the total electron energization (a
comprehensive discussion of the physics of electron heating will be presented elsewhere). Second,

we have neglected the Si-dependence of the reconnection rate. Third, we have assumed w ~ ngmic?,
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which is incorrect at high 5;. Fourth, we do not have a direct measure of £,, which would assess
its dependence on the flow conditions. For these reasons, it is likely that the electron irreversible
heating will be dependent on ;.

In fact, the irreversible electron heating efficiency (shown in Fig. 2.11(c)) systematically decreases
with G;, and the trend is largely independent of the initial temperature ratio, apart from the case
with 3 = 2 (rightmost points in Fig. 2.11(c)). Here, the irreversible heating fraction reaches
Mre i = 0.03 for T, /T; = 1, a factor of ~ 3 larger than for the f; = 2 cases with lower temperature
ratios, To/T3 = 0.1 and 0.3.* We attribute the peculiar behavior of this case to the fact that,
among the m;/me = 25 simulations presented in Fig. 2.11, the f; = 2, T,/T; = 1 case is the
only one for which the scale separation (c¢/wpi)/(c/wpe) between protons and electrons approaches
unity (see Fig. 2.10(c)). For the case i = 2,T,/T; = 1 in Fig. 2.11, this statement holds true
for both the upstream and the downstream scale separation, since the reconnection process at high
B; does not appreciably change the plasma thermal content. However, as we further discuss in
the next two subsections, where we investigate the dependence of our results on the mass ratio
and the magnetization, we find that the necessary and sufficient condition for the electron and
proton heating efficiencies to be comparable is that the downstream scale separation approaches
unity. In retrospect, this is not surprising, since if (¢/wpi)/(¢/wpe) — 1 in the downstream, the
fluid effectively behaves like an electron-positron plasma.

In Fig. 2.11 (second row of panels), we also explore the fi-dependence of (d) total, (e) adiabatic,
and (f) irreversible proton heating. As before, blue, green, and red points correspond to simulations
with upstream T, /T; of 0.1,0.3, and 1, respectively (we change the temperature ratio by varying

the electron temperature, while the proton temperature at a given f; is kept fixed). While the

4We have extensively checked this result, finding that it holds regardless of the simulation boundary
conditions (periodic or outflow in the z direction, or double periodic; see Appendix 2.B) and the number of
computational particles per cell.
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initial dimensionless electron temperature in our simulations ranges from non-relativistic to ultra-
relativistic values, protons always stay at non-relativistic or trans-relativistic energies, 6; ~ 0.0004
— 0.5 (this is true in both upstream and downstream). At low f;, protons are heated more efficiently
than electrons, typically by a factor of 2 — 3 at mass ratio m;/me = 25 (compare panels (a) and
(d), Mretot ~ 0.05 while Mrj tor =~ 0.13). At larger values of m;/me, the ratio of proton to electron
heating is even larger, as we discuss in Sections 2.5.4 and 2.5.6. Once again, the notable exception
is the high-g; case with §; = 2 and T,/7; = 1, where the electron and proton heating fractions are
comparable, Mre o1 =~ 0.06 and Mrj ot ~ 0.08. Similar to electrons, the irreversible component of
proton heating decreases with f;, and shows only weak dependence on the upstream temperature
ratio To/T; (panel (f)). As shown in panel (e), the fractional contribution of adiabatic heating to
the total proton heating increases with f;, as for electrons.

Finally, we show the total particle (i.e., sum of electron and proton) heating, as well as the
corresponding adiabatic and irreversible components, in Fig. 2.11(g)-(i). Given that protons are
heated more efficiently than electrons, the trends in the bottom row of Fig. 2.11 are primarily
controlled by protons (again, with the exception of the case ; = 2, T, /T; = 1). Panel (g) shows
that the total particle heating efficiency is ~ 0.15 across all simulations, with a weakly declining
trend with increasing f;. Panels (h) and (i) show that, as discussed for electrons and protons
individually, heating in the low-£; regime is associated with an increase in entropy, while at high
0i it is dominated by adiabatic compression.

While we cast the heating fractions in Fig. 2.11 in terms of temperature differences between
upstream and downstream, they may be expressed, alternatively, via differences in internal energy

per particle; see Appendix 2.G.
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to-overall irreversible heating ratio gre v (dashed blue), as defined in Egs. 2.29, 2.30. Here, 0, = 0.1,
T./T; = 1, and m;/m, = 1836.
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2.5.4 Dependence of particle heating on m;/me

We have extended our results up to the physical mass ratio m;/me = 1836, and in this section we
focus on the case with T, /T; = 1 (runs with o, = 0.1 and unequal temperature ratios are presented
in Section 2.5.6). The separation between the electron scale ¢/wp. and the proton scale c¢/wp; is
regulated by Eq. 2.5. For non-relativistic particles, the ratio of proton to electron skin depth
is \/m ~ 40, so that a large simulation domain is required to properly capture the proton
physics. However, in the trans-relativistic regime of our simulations, the particles can approach (or
exceed, in the case of electrons) relativistic temperatures. Here, the effective increase in electron
inertia can bring the ratio of proton to electron skin depth close to unity (see Eq. 2.5). This
condition holds, for example, in simulations C[3], C[4], and B[4], when the mass ratio is increased
to mi/me = 1836 at fixed oy, and ;.

We show in Fig. 2.12 the dependence of total (a), adiabatic (b), and irreversible (c) electron
heating on f;, for mass ratios m;/me = 10,25, and 1836. We fix the magnetization o,, = 0.1, and
the temperature ratio T, /7; = 1; the legend is shown in the upper part of panel (b). The points
are colored according to the dimensionless temperature of upstream electrons (the corresponding
colorbar is to the right of panel (c)), ranging from non-relativistic (6, ~ 10~%) to ultra-relativistic
(0o ~ 103) values. In agreement with earlier studies of non-relativistic reconnection by Dahlin
et al. (2014) and Le et al. (2016), we find that the total electron heating efficiency at low f; is a
decreasing function of mass ratio. For the realistic mass ratio, at low (; the total heating fraction
Mre tor = 0.016 is in good agreement with the observed value in the magnetopause, Mre 1o = 0.017
(Phan et al., 2013). At i = 2, the electron heating efficiency is remarkably insensitive to the
mass ratio, with Mre ot ~ 0.06. As we have anticipated above, in this case the upstream and
downstream skin depths of protons and electrons are comparable (once we account for the effects of

relativistic inertia), so the physics should resemble that of an electron-positron plasma, regardless
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of the mass ratio. The adiabatic heating efficiency (panel (b)) shows only a weak dependence on
mass ratio, in agreement with Eq. 2.27. For realistic mass ratios, electron heating is governed by
irreversible processes at low f;, adiabatic heating dominates at intermediate 5; ~ 0.1 — 1, while the
two components equally contribute at high §; ~ 2.

We show the 3i-dependence of the proton heating fractions M7 tot, MTiaq, and Mr; ;. in panels
(d), (e), and (f). The points are colored according to the upstream dimensionless proton tempera-
ture, 6; (the scale is to the right of panel (f)). The upstream proton temperatures are non-relativistic
or trans-relativistic, with 6; < 0.5. At fixed oy, and f;, the initial proton temperature stays the
same, when we vary the mass ratio (as opposed to the electron temperature, which increases with
mass ratio). So, the proton heating efficiencies are expected to remain unchanged, as long as the
box size L, is sufficiently large (in units of the proton skin depth ¢/wyi) to capture the physics of
proton heating. In the bottom row of Fig. 2.12, the proton heating fractions My tot, M7i a4, and
M e are nearly independent of the mass ratio, which demonstrates that even for the realistic
mass ratio, the box used here is sufficiently large to capture the physics of proton heating (and
even more 8o, of electron heating). The results discussed in Section 2.5.3 for m;/m. = 25 and
T./T; = 1 are therefore still valid here: proton heating is dominated by irreversible processes at
low f3;, whereas irreversible and adiabatic components equally contribute at high f;; the irreversible
heating efficiency of protons is a decreasing function of §;; protons are heated more efficiently than
electrons (although the total proton-to-electron heating ratio for m;/me = 1836 is ~ 7 at low /3,
larger than the value measured for m;/me = 25, since the electron heating efficiency decreases with
mass ratio); the heating fractions of the two species approach comparable values at 5; = 2, with
Mri 1ot = 0.08 and Mre o1 ~ 0.06.

In Fig. 2.13(a), we directly compare the fi-dependence of electron and proton heating fractions

Mre tot (solid blue), Mre iy (dashed blue), M ot (solid red), and My iy (dashed red) for mi/me =
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1836, 0, = 0.1, and T, /T} = 1.° As anticipated above, the proton and electron total and irreversible
heating fractions differ roughly by a factor of ~ 7 at low f;, but they approach a similar value at
Bi = 2 (= 0.03 for the irreversible component and ~ 0.06 for the total). In Fig. 2.13(b), we show

the fi-dependence of the ratio of electron-to-overall total heating ratio (solid blue),

MTe tot
qTe, = ’ s 2.29
e tot Mre ot + M tot ( )
and similarly, the ratio of electron-to-overall irreversible heating ratio (dashed blue),
Mre;
qTe,irr = o (230)

MTe,irr + MTi,irr

At low f;, the electron-to-overall total heating ratio is gre tor =~ 0.14, and it increases with 5; up to
qTe tot ~ 0.45 at B; = 2. The corresponding ratio of the irreversible components gre irr is comparable
t0 qretot at both low ;i (where adiabatic heating is negligible) and f; = 2 (where adiabatic and
irreversible contributions are similar), but for intermediate i we find that ¢re i can be as low as
0.07, smaller than gre tor by up to a factor of ~ 3.

2.5.5 Dependence of particle heating on magnetization

In the previous sections, we have focused on the case o, = 0.1; in Fig. 2.14, we show the f;-
dependence of the heating efficiencies for a suite of simulations with ¢, = 0.1,0.3, 1,3, and 10.5 We
fix the temperature ratio T, /7; = 1 and the mass ratio m;/me = 1836. The panels are similar to

those in Fig. 2.12: (a), (b), and (c) show the electron heating fractions Mre tot, M7Tead, a0d Mre jrr;

5The error bars in Fig. 2.13(a) are larger for protons than electrons (for electrons, they are smaller than
the size of the plot symbols), but the fractional error is the same. Additionally, the error bars are larger at
low B;. As described in 2.5.2, this results from the frequent formation of secondary islands at low ;.

6At high o, the rate of secondary island production is enhanced (Sironi et al., 2016). In the simulations
with o, = 1,3,10, we employ outflow boundary conditions in order to evolve the system to longer times.
This allows us to average the downstream quantities in the reconnection exhausts over a longer timespan,
and obtain more reliable estimates.
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Figure 2.14: Dependence of the heating efficiencies on the magnetization o,, (normalized to the enthalpy
density), with a layout similar to that of Fig. 2.12; (a): electron total, Mre to1; (b): electron adiabatic,
Mre ag; (c): electron irreversible, Mre irv; (d): proton total, Mr; ¢or; (€): proton adiabatic, M aq; (f):
proton irreversible, My jry. We fix T, /T; = 1 and m;/m. = 1836, and vary the magnetization o,, = 0.1
(green), 0.3 (purple), 1 (brown), 3 (magenta), 10 (black); the legend is located in the upper part of panel
(b). Points in panels (a)—(c) are colored according to 0, (color bar is to the right of (c)), and points in
(d)—(f) according to 6; p, (color bar is to the right of (f)).
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Figure 2.15: j;-dependence of downstream proton-to-electron skin depth ratio, (¢/wpi)/(c/wpe) (see
Eq. 2.5), for magnetizations o, = 0.1 (green), 0.3 (purple), 1 (brown), 3 (magenta), and 10 (black). For
these simulations, the upstream electron-to-proton temperature ratio is Tp/7; = 1, and m;/m. = 1836.
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Figure 2.16: (a): Dependence on the magnetization o; (normalized to rest mass energy density) of elec-
tron total heating efficiency Mye ot (solid blue), irreversible heating efficiency Me iy (dashed blue), pro-
ton total heating efficiency My; tor (solid red), and proton irreversible heating efficiency M, i (dashed
red). (b): Dependence on the magnetization o; of the electron-to-overall heating ratio gye tot (solid blue)
as in Eq. 2.31, electron-to-overall irreversible heating ratio gye irr (dashed blue) as in Eq. 2.32, and em-
pirical formula Eq. 2.33 (dotted black) obtained by Werner et al. (2016) in the case §; = 0.01. Here,
By~ 0.03, To/T: = 1, and m; /me = 1836.

(d), (e), and (f) show the proton heating fractions Mri tot, M7 ad, and My jrr. The legend is in panel
(b): green, purple, brown, magenta, and black curves connect the points having o, = 0.1,0.3, 1,3,
and 10, respectively, to guide the eye. The points of panels (a)—(c) are colored according to the
upstream dimensionless electron temperature 6, as indicated by the color bar to the right of panel
(c). Similarly, in panels (d)-(f) the points are colored according to the upstream dimensionless
proton temperature 6;, as indicated by the color bar to the right of panel (f). For fixed f;, T /1;, and
m;/me, an increase in magnetization leads to an increase in the upstream dimensionless temperature
of both electrons and protons, which can be seen by comparing the colors of data points in panel
(a) or (d) at fixed f;.

We note that the data points in Fig. 2.14 extend up to a maximum value of 3; that depends
on o,. For our choice of defining the magnetization using the enthalpy density, rather than the
rest-mass energy density, the ion i cannot exceed fimax ~ 1/40,. For each value of oy, the
points with the highest value of ; are also those for which the proton-to-electron scale separation

ratio (c¢/wpi)/(c/wpe) is the smallest (see Fig. 2.15). We find that in the limit §; — [Simax, the
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Figure 2.17: Comparison of the electron-to-overall heating ratio gye tot between our simulations with
mi/me = 1836 and T,/T; = 1 (filled circles with error bars) and the best fitting formula in Eq. 2.34 (solid
curves). We show the dependence on (a) plasma-f; and (b) magnetization o,,. In panel (a), the different
colors represent magnetizations o, = 0.1 (green), 0.3 (purple), 1 (brown), 3 (magenta), and 10 (black).
In panel (b), the color coding of the curves is indicated in the legend (from cyan to red for increasing f;),
while the color of the filled points refers to the colorbar on the right. In both panels, the black dotted line
at Que,tot = 0.5 shows the limit of comparable heating efficiencies between electrons and protons, expected
when i = Bi max (regardless of o) or o, > 1 (independently of 5;).

29



total electron heating efficiency shows a characteristic upturn (panel (a)), with a typical value
Mre tor =~ 0.05 that is nearly independent of o,,. In the low-5; regime, the electron total heating
efficiency approaches a o,-dependent plateau, with higher o, yielding larger electron efficiencies
(panel (a)). The opposite holds for protons: higher magnetizations give smaller proton heating
efficiencies (panel (d)). Indeed, for o,, = 10 the electron and proton efficiencies are comparable in
the whole range of ; we have explored, in agreement with the results by Sironi et al. (2015).

As anticipated in Section 2.5.3, we find that the necessary and sufficient condition for having
comparable electron and proton heating efficiencies is that the separation between the electron
and proton scales in the downstream be of order unity (or equivalently, that the two species be
relativistically hot, with comparable temperatures). As shown in Fig. 2.15, this can be achieved
in two ways: (i) at high o, regardless of §;, the reconnection process transfers so much magnetic
energy to the particles that both species become relativistically hot, with comparable temperatures;
(7) at low oy, and in the limit ;i — Bi max, both electrons and protons already start relativistically
hot in the upstream region (and more so, will be relativistically hot in the downstream).

Most of the o,-dependences that we have now presented for the total heating efficiencies Mt ot
and M 1ot also apply to the irreversible components Mre iy and My iy, since the adiabatic contri-
bution is independent of the magnetization, at fixed 5; (see Eq. 2.27). However, since the magnetiza-
tion affects the efficiency of irreversible heating at fixed S;, while the adiabatic component remains
the same, this can lead to a significant change in the relative contributions of irreversible and adi-
abatic heating. This can be seen, for example, at i ~ 0.5. For oy, = 0.1, M7cirr/Mretor =~ 0.1,
whereas at o, = 0.3, we find Mre ire/Mre 1ot = 0.5.

To connect with the recent work of Werner et al. (2016), we show in Fig. 2.16 the dependence
of electron and proton heating on the magnetization oj, defined with the rest-mass energy density

(see Eq. 2.2). We fix temperature ratio T./7; = 1, mass ratio m;/me = 1836, and (; ~ 0.03 (which
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is close to the upstream plasma f; employed in Werner et al. (2016), 8 = 0.01). In panel (a),
we show the oj-dependence of the electron total (solid blue), electron irreversible (dashed blue),
proton total (solid red), and proton irreversible (dashed red) heating fractions, phrased in terms of
internal energy as in Werner et al. (2016), Mye tot, Muye irrs Muitot, and My iy (see Eqgs. 2.15, 2.17).
As oy increases, the downstream scale separation between protons and electrons gets reduced (see
Fig. 2.15), and the two species approach comparable heating efficiencies (whereas the two differ by
a factor of ~ 3 at low magnetization). This holds for both the total efficiencies Mye tot and My; tot
and the irreversible components Mye irr and My; ;rr, since the amount of adiabatic heating at fixed
(i does not depend on oy,.

This is further illustrated in Fig. 2.16(b), where we show the o;-dependence of the electron-to-

overall total heating fraction, phrased in terms of internal energy (solid blue),

Mue tot
Guesot = : , 2.31
uestor Mue,tot + Mui,tot ( )
and the electron-to-overall irreversible heating ratio (dashed blue),
Mue,irr (232)

Que,irr = .
' Mue,irr + Mui,irr

Blue circles show the results of our simulations, and the black dotted line indicates the empirical

formula suggested by Werner et al. (2016),

1 oi/5
ue,emp — 1 — 2.33
Queemp 4( +V2+ai/5> (2:33)

We find reasonable agreement between this empirical formula and our simulations, for 3; ~ 0.03.

For low values of the magnetization, quetot = Que,irr = 0.25, but as o; increases toward the ultra-
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relativistic limit, guetot and gueirr approach ~ 0.5, i.e., electrons and protons are heated with
comparable efficiencies. However, Fig. 2.14 shows that, at fixed magnetization, the heating efficien-
cies depend on f;, a trend which cannot be properly captured by the empirical formula of Werner
et al. (2016).

We then propose the following formula, which captures the dependence of the electron-to-overall
heating ratio gue ot On both magnetization o,, and proton f;:

1 _(1 - Bi/ﬁi,max)&g

QUe,ﬁt = 5 €xp 1 + 1.9 0_8,'7 )

(2.34)

where i < Bimax = 1/404. The formula in Eq. 2.34 has two desirable, and physically motivated,
features. First, for 5; — (i max, the electron-to-overall heating ratio approaches 0.5, independently
of the magnetization. Second, for o, > 1, quetot = 0.5, regardless of B;. In both these limits,
the scale separation between electrons and protons in the downstream will be of order unity (as
we have discussed above), which we have demonstrated is a necessary and sufficient condition for
comparable heating efficiencies between electrons and protons.

In Fig. 2.17, we compare Eq. 2.34 to the results of simulations with m;/me = 1836 and T, /7; = 1
(this is the same set of simulations presented earlier in this section, as well as in Section 2.5.4). In
Fig. 2.17(a), we show the fi-dependence of the electron-to-overall heating ratio gye ot for a range
of oy (see the legend). The simulation results are shown by solid filled circles, while solid lines
are based on Eq. 2.34. The curves are plotted up to to the maximum allowed value of ;, namely
Bimax = 1/40y. The black dotted line at guetot = 0.5 shows the limit of comparable heating
efficiencies for electrons and protons, which will be reached as i — (i max, independently of o,,.

We find that both the simulation data and the fitting formula in Eq. 2.34 asymptote to a constant

value for 3; < i max, With smaller heating ratios at lower o,,. In the non-relativistic limit o, < 1,
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our formula prescribes that gy 6t — 0.18, not very different from the value gy 6t ~ 0.22 obtained
for o, = 0.1. This is consistent with the expectation that in the non-relativistic regime o, < 1,
the heating efficiencies will be independent from the magnetization.

In Fig. 2.17(b), we show the dependence of the electron-to-overall heating ratio on the mag-
netization oy, for a range of §;. The simulations results are shown by filled solid circles, which
are colored according to the value of §; in the upstream (the color scale is located to the right of
Fig. 2.17(b)). We select a few representative values of f5; and plot the corresponding predictions
based on Eq. 2.34 with the solid curves (see the legend in the plot). The curves are plotted up to
0w max, Which for a fixed f; is given by oy max ~ 1/46;. In summary, Figs. 2.17(a) and (b) show that
our proposed formula (Eq. 2.34) properly captures the magnetization and plasma §; dependence of
the electron-to-overall heating ratio over the whole range of o, and §; explored in this work.
2.5.6 Dependence of particle heating on T./T; for m;/m. = 1836
In Fig. 2.18, we present the dependence of electron and proton heating efficiencies on the proton
beta f; and the temperature ratio T, /T; for the realistic mass ratio m;/me = 1836 (the figure layout
is the same as in Fig. 2.11, where we had employed a reduced mass ratio m;/m. = 25). We fix
ow = 0.1. Even at the realistic mass ratio, the conclusions drawn in the reduced mass ratio case
mi/me = 25 (see Section 2.5.3) still hold: electron and proton heating at low f; is dominated by
irreversible processes, while heating in the high-3; regime is mostly a result of adiabatic compression;
the irreversible component of electron heating is independent of T/7; at i < 1 (Fig. 2.18 (c¢));
the proton irreversible heating shows only a weak dependence on temperature ratio (Fig. 2.18 (f));
protons are heated more efficiently than electrons (compare the top and middle rows).

For both electrons and protons, the adiabatic heating efficiencies for m;/me = 1836 (Figs. 2.18(b)

and (e)) are similar to those of the reduced mass ratio case. In fact, according to Eq. 2.27, the
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Figure 2.18: For mass ratio m;/m, = 1836, magnetization o,, = 0.1 and upstream temperature ra-

tios To/T; = 0.1 (blue), 0.3 (green), and 1 (red), we present the S;-dependence of heating efficiencies; (a):
electron total, Mye ot; (b): electron adiabatic, Mre aq; (c): electron irreversible, My irr; (d): proton to-
tal, Mr; tor; (€): proton adiabatic, My aq; (f): proton irreversible, Mp; u; (g): electron and proton total,
Mre 1ot + Mritor; (h): electron and proton adiabatic, Mpe ad + Mri aq; (1): electron and proton irreversible,
MTe,irr + MTi,irr~
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adiabatic heating efficiency is independent of mass ratio.” For protons, the adiabatic heating
efficiency decreases at f; = 2; this is largely an effect of the decrease in the adiabatic index, as the
protons transition from non-relativistic to relativistic temperatures.

For m;/m. = 1836, the irreversible heating of protons at low f; is a factor of ~ 5 —7 greater than
that of electrons; in the m;j/me = 25 case, the ratio of proton-to-electron irreversible heating was
smaller, ~ 2—3. As in the reduced mass ratio case, the simulation with 8 = 2 and T /T; = 1 shows
a sharp increase in irreversible electron heating as compared to the decreasing trend observed at
lower f; (Fig. 2.18 (c)), and the heating efficiencies of the two species become comparable. As
we argued in Section 2.5.5, the electron and proton heating efficiencies are about equal if and only
if the downstream scale separation is of order unity. Even for the highest values of §; that we
can explore (= 3.9 for T, /T; = 0.1, and =~ 4.6 for T,/T; = 0.3.), this condition is not realized for
smaller temperature ratios ((c¢/wpi)/(¢/wpe) 2 3.2 for T,/Ti = 0.1, and (c/wpi)/(c/wpe) 2 1.8 for
T./T; = 0.3), which explains why — despite the upturn in electron heating efficiency at high 5;
(Fig. 2.18 (c)) — the ratio of irreversible proton to electron heating for 7. /7; = 0.1 and 0.3 remains
larger than unity.
2.6 Summary and discussion
In this work, we have presented the results of a series of 2D fully-kinetic PIC simulations to explore
electron and proton heating by magnetic reconnection in the trans-relativistic regime. Here, protons
are typically non-relativistic, yet electrons can be moderately relativistic or even ultra-relativistic.
We vary the flow magnetization o,,, the proton §5; and the electron-to-proton temperature ratio
T./T;, extending our results up to the physical mass ratio m;/me = 1836.

We show that heating in the high-3; regime is primarily dominated by adiabatic compression,

while for low §; the heating is genuine, in the sense that it is associated with an increase in entropy.

"While Eq. 2.27 is written for electrons, an analogous equation holds for the adiabatic heating of protons,
if we replace B;T./T; — B and Fe — .
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At our fiducial o, = 0.1, we find that for g; <

~

1 the irreversible heating efficiency is independent
of T, /T; (which we vary from 0.1 up to 1), for both electrons and protons. For T./T; = 1, the
fraction of inflowing magnetic energy converted to electron irreversible heating at realistic mass
ratios decreases from ~ 1.6% down to ~ 0.2% as f3; ranges from 3 ~ 1072 up to B ~ 0.5, but
then it increases up to ~ 3% as [; approaches ~ 2. Protons are heated much more efficiently
than electrons at low and moderate f5; (by a factor of ~ 7), whereas the electron and proton
heating efficiencies become comparable at 3; ~ 2 if T, /T; = 1. We find that comparable heating
efficiencies between electrons and protons are achieved when the scale separation between the two
species in the reconnection exhaust approaches unity, so that the electron-proton plasma effectively
resembles an electron-positron fluid. This occurs at high 5; for low magnetizations, or regardless
of i at high magnetizations (i.e., in the regime o, > 1 of ultra-relativistic reconnection). We
propose a fitting formula (Eq. 2.34) that captures the magnetization and plasma-/3; dependence of
the electron-to-overall heating ratio over the whole range of o, and 5; explored in this work.

The low- and high-f; cases differ with respect to secondary island formation. The formation
of secondary islands is suppressed at high 5;, which leads to a homogeneous reconnection outflow.
Secondary islands occur frequently at low ; and high magnetizations.

We also measure the inflow speed for our fiducial magnetization o,, = 0.1, finding that it decreases
from i, /va = 0.08 down to 0.04 as f3; ranges from 3; ~ 1072 up to B; ~ 2 (here, va is the Alfvén
speed). Similarly, the outflow speed saturates at the Alfvén velocity for low i, but it decreases
with increasing f; down to voyt/va ~ 0.7 at i ~ 2. The inflow (outflow, respectively) speed is
independent of T, /T; at low i, with only a minor tendency for lower (higher, respectively) speeds
at larger To/T; in the high-5; regime.

This investigation provides important insights into the physics of low-luminosity accretion flows,

such as the accretion disk of Sgr A*. Collisionless accretion flows are often assumed to be two-
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temperature, and our results indeed show that in the trans-relativistic regime relevant to hot
accretion flows and accretion disk coronae, magnetic reconnection preferentially heats protons more
than electrons. Our results — and in particular, our fitting formula in Eq. 2.34 — can be used to
provide general relativistic MHD simulations of accretion flows with the sub-grid physics of energy
partition between electrons and protons (Ressler et al., 2015, 2017b; Sadowski et al., 2017). This
ingredient is of fundamental importance in producing emission models that can be compared with
the forthcoming observations by the Event Horizon Telescope (Doeleman et al., 2008).

To conclude, we note a few lines of investigation that have not been considered in the current
work. First, we limited our focus to the case of symmetric, anti-parallel reconnection. The more
general case of guide-field reconnection will be a topic of future investigation. Second, while we
have provided a quantitative description of energy partition between electrons and protons, we have
not addressed the question of the underlying heating mechanism. A detailed study of the heating
mechanism is deferred to future work. Lastly, we have focused on thermal heating, as opposed to
nonthermal acceleration. The dependence of nonthermal acceleration efficiency on magnetization
is the focus of Werner et al. (2016), though the dependence on f; and T, /7; remains unexplored.
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2.A Convergence with respect to domain size

For most of the simulations presented in the main body of this work, we employ a domain size
of L, ~ 4000 c/wpe. However, as we demonstrate in this appendix, the heating efficiencies are
insensitive to the domain size. While we have extensively checked for convergence with boxes
ranging in size from L, ~ 500 ¢/wpe up to Ly =~ 5000 ¢/wpe, we focus here on a low-f; case and a
high-; case, and compare domains of size L, ~ 2000 ¢/wpe and L, ~ 4000 ¢/wpe.

We show in Fig. 2.19 the electron heating fractions Mre tot, Mread, M1eirr (panels (a), (b), and
(c)) and proton heating fractions My tot, Mriad, Mripr (panels (d), (e), and (f)). Green circles
indicate simulations with L, =~ 2000 ¢/wpe, and blue triangles L, ~ 4000 ¢/wpe. The comparison is
performed for two cases: f5; = 0.0078, T./T; = 0.1 and 5 = 2, T/T; = 1. For both the low- and
high-$; simulations, o,, = 0.1 and m;/me = 25. For each pair of simulations (at low and high £;),
the downstream and upstream dimensionless temperatures that enter into the heating fractions are
measured at the same physical distance (in units of the electron skin depth) downstream of the
central X-point. The electron and proton heating fractions show minimal dependence on the box
size.

In Fig. 2.20, we show — for box sizes L, ~ 2000 ¢/wpe (green) and L, ~ 4000 ¢/wpe (blue) — the
spatial profiles along the outflow direction (i.e., along =, and averaged along y in the cells identified
by Eq. 2.7 as belonging to the reconnection downstream) of: (a) dimensionless electron temperature
0 for p; = 0.0078, T./T; = 0.1; (b) dimensionless proton temperature 6; for g; = 0.0078, T, /T; =
0.1; (c) dimensionless electron temperature 6, for g = 2, T,/T; = 1; (d) dimensionless proton
temperature 6; for 5 = 2, T./T; = 1. The simulations shown in Fig. 2.20 correspond to the same
simulations presented in Fig. 2.19. The dimensionless temperature profiles are shown at ¢ &~ 1t4;
this corresponds to t ~ 6900wy, for L, & 2000 ¢/wpe, and to ¢t ~ 14000 wy." for L, ~ 4000 ¢/wpe.

The horizontal axes range from x ~ —700 ¢/wpe to +700 ¢/wpe, which accounts for most of the
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smaller box, but only a fraction of the larger one. For low f;, the region used for our measurements
is located at  ~ £630 ¢/wpe, whereas it is at © ~ £350 ¢/wp. for high fi; in each case, the chosen
distance is far enough from the central X-point that the temperature profiles attain a quasi-uniform
value, and far enough from the domain boundaries to be unaffected by the primary island (Section
2.4).

In Figs. 2.20(a) and (b), which correspond to the low-f; case, the dimensionless temperature
profiles show similar spatial dependence within  ~ £630 ¢/wp., and for the high-g; profiles shown
in (c) and (d), the temperatures agree within = ~ £350 ¢/wp. For the high-f; case, the large and
small boxes show some discrepancy beyond x ~ £400 ¢/wp., which is an effect of the large primary

island extending from the domain boundary into the outflow region.
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Figure 2.19: Comparison between domain sizes L, =~ 2000 c/wpe (green circles) and L, ~ 4000 ¢/wpe
(blue triangles) of the following heating fractions; (a): electron total, Mre tot; (b): electron adiabatic,

Mre aq; (c): electron irreversible, Mre irr; (d): proton total, Mritot; (€): proton adiabatic, My aq; (f): pro-
ton irreversible, My i,r. We present a low-3; case with 8; = 0.0078, T./T; = 0.1, and a high-5; case with
Bi =2, To/T; = 1; in both cases, the mass ratio is m;/me = 25 and o,, = 0.1.

2.B Outflow versus periodic boundary conditions
We have compared the results of our main simulations, which are periodic in z, to a second set
that employs outflow boundary conditions, similar to what is described in Sironi et al. (2016). In

Fig. 2.21, we show the time evolution of the electron heating fractions Mre tot, Mread, and Mre jrr
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Figure 2.20: Spatial profiles along the reconnection outflow of (a): dimensionless electron temperature 6,
for 5; = 0.0078, T./T; = 0.1; (b): dimensionless proton temperature 6; for 5; = 0.0078, T,,/T; = 0.1; (¢):
dimensionless electron temperature 6, for §; = 2, To/T; = 1; (d): dimensionless proton temperature 6; for
Bi = 2, T,/T; = 1. The mass ratio is m;/m, = 25 and o, = 0.1. The spatial profiles are extracted from
simulations with domain size L, ~ 2000 ¢/wpe (green), and L, =~ 4000 ¢/wpe (blue). These spatial profiles
are from the same simulations shown in Fig. 2.19, at time ¢ ~ 1¢4.

in a low-f; simulation (Fig. 2.21(a)—(c)) and a high-8; case (Fig. 2.21(d)—(f)), for both outflow
(blue) and periodic (red) boundary conditions. For the periodic simulations the domain size is
L, = 4318 ¢/wpe, whereas for the outflow runs L, ~ 2600 ¢/wpe. Up to ~ 1 Alfvénic crossing time,
which corresponds to t ~ 1.4 x 10* wgel for the periodic simulations and ¢ ~ 8.5 x 103 wgcl for the
outflow runs, we find good agreement between the periodic and outflow simulations. At later times,
the pile-up of particles and magnetic flux in the primary magnetic island sitting at the boundary
leads to the eventual suppression of reconnection in periodic simulations, whereas the outflow runs
can be evolved for multiple Alfvénic crossing times.

In Fig. 2.22, we compare the dependence of the electron total heating fraction Mre ot on f;

and T,/T; for periodic and outflow simulations with m;/me = 25 and o, = 0.1. The periodic
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simulations are indicated by blue, green, and red circles, corresponding to upstream temperature
ratios of Tp/T; = 0.1,0.3, and 1, respectively. The results of outflow simulations are shown by
dark yellow (7./7; = 0.1), magenta (7./7; = 0.3), and cyan (T./T; = 1) triangles. The points
corresponding to periodic runs are connected by solid lines, whereas the outflow cases are linked by
dashed lines. With regard to the fi- and T, /Ti-dependence of the electron total heating fraction,
Mre to1, the outflow and periodic cases show good agreement. The agreement for adiabatic and

irreversible heating fractions is also good.
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Figure 2.21: Comparison between outflow (blue) and periodic (red) simulations with ¢, = 0.1 and
mi/me = 25. We show the time evolution of (a): electron total heating fraction, Mre o for 8; =

0.0078, T./T; = 0.1; (b): electron adiabatic heating fraction, Mye aq for 8; = 0.0078, To/T; = 0.1; (c):
electron irreversible heating fraction, Mre i for 5; = 0.0078, To./Ti = 0.1; (d): electron total heating frac-
tion, Mre 1o for i = 2, T, /T; = 1 (e): electron adiabatic heating fraction, Mre aq for f; = 2, To/T; = 1
(f): electron irreversible heating fraction, MTe wr for B = 2, T, /T; = 1 The heating fractions are shown
in the interval t = 5 x 103w ! — 9 x 103 wpe , which corresponds to t &~ 0.36t4 — 0.64t4 for the periodic
simulations and ¢t =~ 0.6t5 — 1t for the outflow ones. The curves have been shifted in time to account for
slightly different onsets of reconnection in periodic vs. outflow cases, due to different initialization of the

current sheet.

2.C Convergence with respect to spatial resolution

To properly capture the electron physics, adequate spatial resolution of the electron skin depth

1

¢/wpe, or equivalently, temporal resolution of the inverse electron plasma frequency Wpe 5

is necessary.

In most of our simulations, we use c¢/wp. = 4 cells; since we fix ¢ = 0.45 cells/timestep, the
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Figure 2.22: Comparison of outflow and periodic simulations (with o,, = 0.1 and m;/m, = 25), in terms
of the dependence of Mre o1 0n f; and T /T;. Circles connected by solid lines show the results of periodic
simulations, and inverted triangles connected by dashed lines indicate outflow simulations. For periodic
runs, blue, green, and red correspond to runs with upstream temperature ratios T, /73 = 0.1,0.3, and 1; for
periodic, dark yellow, magenta, and cyan denote T, /T; = 0.1,0.3, and 1.

temporal resolution in our simulations is At ~ 0.1 w;el. In this appendix, we show that even at

-1

e » the heating fractions

finer spatial (also, temporal) resolution, i.e. ¢/wpe = 8 cells = At ~ 0.05w
are essentially unchanged relative to those obtained in simulations with ¢/wpe = 4 cells.

In Fig. 2.23, we show the heating fractions for electrons (panels (a), (b), and (c)) and protons
(panels (d), (e), and (f)). For the cases §; = 0.0078,T,/T; = 1 and §; = 2,T,/T; = 1, we compare a
simulation with ¢/wpe = 4 cells (denoted by green circles) to one with ¢/wpe = 8 cells (indicated by
blue triangles). In both sets of simulations, we employ m;/m. = 1836 and magnetization o,, = 0.1.
To ensure that the simulations with c/wp. = 8 cells contain the same number of electron skin
depths as those with ¢/wpe = 4 cells, it is necessary to double the size of the simulation domain
in  (in units of cells). For the simulations with c/wpe = 4 cells, we use L, ~ 8000 cells, and
for ¢/wpe = 8 cells, we use L, ~ 1.6 x 104 cells; in both cases, the physical extent of the domain
in z is Ly ~ 4318 ¢/wpe. For both choices of the spatial resolution, the electron heating fractions

(total, adiabatic, and irreversible) show good agreement. The proton heating fractions show good

agreement, too.
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Figure 2.23: Comparison between simulations with c/wpe = 4 cells = At ~ 0.1 w;cl (green circles)
and c/wpe = 8cells = At ~ 0.05wp,' (blue triangles) of the following heating fractions; (a): elec-
tron total, Mre to1; (b): electron adiabatic, Mye aq; (¢): electron irreversible, Mye irv; (d): proton total,
M to1; (€): proton adiabatic, Mr; aq; (f): proton irreversible, Mry;i,,. We present a low-3; case with

Bi = 0.0078, T./T; = 1, and a high-5; case with 8 = 2, T./T; = 1; in both cases, we employ the realis-
tic mass ratio m;/me. = 1836 and o,, = 0.1.

2.D Control of numerical heating

In simulations with high £; and low temperature ratios, numerical effects can lead to an artificial
increase in the upstream electron temperature, at the expense of protons. The rate of numerical
heating is proportional to the temperature difference between the two species, hence the high-5;
simulations with 7, /7; = 0.1 exhibit the strongest degree of numerical heating (Melzani et al., 2013).
As the temperature difference between electrons and protons in the upstream and downstream
regions is not necessarily the same, the rate of numerical heating in the two regions may be different.
If not adequately kept under control, this can affect our measured heating efficiencies.

In Fig. 2.24, we compare two simulations with m;/me = 25,0, = 0.1, 5; = 2, and T,/7; = 0.1,
which is the case where numerical heating is the most serious. One has Nyp. = 16 (dashed lines),
and the other Ny, = 64 (solid lines). In both cases, the size of the domain is L, = 4318 ¢/wpe. In
panel (a), we show the time evolution of the dimensionless electron temperature in the upstream

(magenta) and downstream (green) for Npp. = 16 (dashed) and Ny, = 64 (solid). The vertical
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black dotted line indicates the time at which primary reconnection wavefronts recede past the
region selected for our measurements (see Section 2.4). The dimensionless electron temperature in
both the upstream and downstream increases with time, however the amount of numerical heating
is significantly less with Npp. = 64 than with Ny, = 16. For example, the former shows a shift
in downstream temperature (green) from ¢ ~ 4 x 103 w}jel to 1.5 x 10% w;el of only Af, =~ 0.02,
but for Npp. = 16 the temperature shift is about six times larger. The magenta lines show the
analogous comparison for upstream temperatures. For both choices of Ny, the initial value of
dimensionless electron temperature in the upstream is the same, but by t = 1.5 x 10% wgel, they
differ by Af. ~ 0.15.

In panel Fig. 2.24(b), we show the time evolution of the total electron heating fraction Mre tot
for Nppe = 64 (solid blue) and 16 (dashed blue). Although numerical heating can significantly shift
the measured values of dimensionless temperature in the downstream and upstream (panel (a)), we
find that the heating fractions are much less sensitive to the value of Nppc, with N,p. = 16 already
giving good results. The heating fractions we measure are proportional to the difference between
the downstream and upstream temperatures (or internal energy per particle), and it appears that
the numerical heating in the downstream and upstream regions nearly cancels out in the difference.
Although we use Npp. = 64 in simulations with f; = 2, the agreement with the Ny, = 16 case
demonstrates that the impact of numerical heating is negligible for our measured heating fractions.

We have tested the effect of numerical heating in a small box (L, ~ 1080 c/wpe) with up to

Nppe = 256, however the difference (as regard to heating fractions) with respect to simulations

with Nppe = 64, our standard choice for all 3; = 2 simulations, is again, negligible.
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Figure 2.24: Comparison of two simulations with N,p. = 16 (dashed lines) and Npp. = 64 (solid lines),
having the same physical parameters: §; = 2,7,/T; = 0.1,0, = 0.1, and m;/m. = 25. We present
the time evolution of (a): dimensionless electron temperature, ¢, in the upstream (magenta) and down-
stream (green); (b): total electron heating fraction, Mre tor. The upstream and downstream regions show
an increase in electron temperature as time evolves, caused by numerical heating. The impact of numeri-
cal heating is significantly reduced by employing N, = 64. The measured value of Mr 1ot is, however,
largely unaffected by numerical heating (panel (b)).

2.E Anisotropy in the downstream
We characterize the anisotropy in our simulations with ratios of the diagonal components of the

stress-energy tensor,

Ty = wa/ﬂot (235)
Ty = Tyy/Ttot (2.36)
T, = Tzz/T’toh (237)
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as seen in the fluid rest frame; here, Tior = (Typa + Tyy + T22)/3. As we show below, we typically
measure anisotropies on the order of 5 — 10% in the downstream, i.e., the reconnected plasma is
nearly isotropic.

In Fig. 2.25, we show for o, = 0.1 and m;/me = 25 the time evolution of the anisotropy ratios
ry (red), 7y (green), and 7, (blue), for three temperature ratios 7. /7; = 0.1,0.3, and 1, and five
values of ; = 0.0078,0.031,0.13,0.5, and 2 (f; and T, /T; of the respective simulation are indicated
at the top of each panel). From top to bottom, 3; increases; from left to right, T, /7; increases. The
temporal evolution starts from wpet = 4 x 103, when the downstream region reaches a quasi-steady
state. We find that the downstream pressures along the two directions transverse to the outflow (¥
and Z) are nearly identical, and slightly smaller than the pressure along the outflow direction (X,
in our setup), which agrees with the findings of Shay et al. (2014).

2.F Convergence of the layer width when varying the initial sheet thickness

In Fig. 2.9(e), we showed the T,/Ti- and fi-dependence of the reconnection layer width dpec. As
mentioned in Section 2.3, we set the initial current sheet thickness to be A = 40 ¢/wpe. A natural
question is whether the measured value of d... is affected by the sheet thickness at initialization,
or by the self-consistent reconnection physics alone. To demonstrate that the measured values of
Orec do not depend on the initial current sheet thickness A, we show in Fig. 2.26 the time evolution
of drec for A = 30 (red), 40 (green), and 60 c/wp. (blue). Here, the box size is L, = 2159 ¢/wpe,
Bi =2, T)T; = 1,04 = 0.1, and mi/me = 25. The reconnection width is measured at 215 c/wpe
downstream of the central X-point. The A = 40, 60 ¢/wp. curves have been shifted in time to
account for the delayed onset of reconnection caused by the thicker initial current sheet. The time

evolution of 6, in Fig. 2.26 is shown starting at ¢t = 5000w,

be » beyond which drec reaches a quasi-

steady value. The three simulations converge to a similar value dyec = 25 ¢/wpe, independent of the

current sheet thickness at initialization.
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The values in this plot should not be directly compared to those in panel (e) of Fig. 2.9. Here, we
extract drec at a distance of ~ 215 ¢/wp. downstream of the central X-point (in order to avoid the
influence of the primary island sitting at the boundary), whereas in the larger box used in Fig. 2.9,
drec Was measured at 430 ¢/wpe from the center. Still, the results from the two experiments yield
the same opening angle for the reconnection outflow.

2.G Heating efficiencies in terms of internal energy per particle

In the main body of the text, we phrased most of the heating fractions in terms of differences
in temperature between downstream and upstream, but they can also be expressed in terms of
differences in internal energy per particle. In Fig. 2.27, which is analogous to Fig. 2.11, we show
the T, /Ti- and fi-dependence of: electron heating fractions Mye tot, Mye,ad, Mueirr (panels (a), (b),
(c)); ion heating fractions Muy; tot, Muyiad, Muiir (panels (d), (e), (f)); and total particle heating
fractions Moye tot + Mui tots Mue.ad + Muiads Mue ier + Muiier (panels (g), (h), (i)). As before, blue,
green, and red lines denote temperature ratios Tp/7; = 0.1,0.3, and 1, and the simulations have
mi/me = 25 and o, = 0.1. Since the protons here are non-relativistic in both the upstream and
downstream, the points in panels (d) of Figs. 2.27 and 2.11 typically differ by a factor of 5,—1 = 2/3
(excluding the f; = 2 cases, for which the protons are mildly relativistic, with 6; ,, ~ 0.4), where
4 = 5/3 is the adiabatic index for a non-relativistic gas. The relationship between the two options
for measuring the heating fractions of electrons, Mre ot and Mye ot in panels (a) of Figs. 2.27
and 2.11, is not as simple because the electrons can be non-, trans- or ultra-relativistic. For
example, at 3 = 2,T,/T; = 1, the upstream and downstream dimensionless electron temperatures
are e up = be down ~ 10, and the adiabatic index is 4, ~ 4/3 in both the upstream and downstream.
The ratio of Mre ot t0 Myetor is then Mre ot/ Muyctot = 1/3 = 4o — 1 for 4, = 4/3. However, at
low 3, electrons are less relativistic, and the ratio Mre tot/Muye tot is typically larger because the

adiabatic index is larger. Still, we remark that all of the conclusions presented in the paper hold
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when the heating efficiencies are measured using the internal energy per particle, rather than the

temperature.
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Figure 2.25: Time evolution of the anisotropy ratios in the reconnection downstream for a range of f;
(increasing from top to bottom, as indicated in the legends) and T, /T; (0.1 in the left column, 0.3 in the
middle column, 1 in the right column). Here, o, = 0.1 and m;/m. = 25. Red, green, and blue curves
correspond to the ratios 75, ry, and r, (Eqgs. 2.35-2.37). Time evolution is shown starting at wpet = 4x 103,
at which point the downstream region used for our heating measurements reaches a quasi-steady state.
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Figure 2.26: Time evolution of the reconnection layer width d,.. for a simulation with box size L, =
2159 ¢/wpe, Bi = 2, Te/T; = 1,0, = 0.1, and m;/me = 25. The value of dye. is measured at 215 ¢/wpe from
the center. It does not depend on the choice of the initial current sheet thickness, A = 30,40, 60 ¢/wpe,
shown by the red, green, and blue curves, respectively.
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Figure 2.27: The layout here is analogous to Fig. 2.11, but for the internal energies, u.,u; instead of
temperatures, Te, T}. Plasma (- and T, /Ti-dependence of various heating efficiencies; (a): electron total,
Moyetot; (b): electron adiabatic, Mye aq; (¢): electron irreversible, Mye irr; (d): proton total, My, tot; (€):
proton adiabatic, My; aq; (f): proton irreversible, My ix; (g): electron and proton total, Mye tot + Muyi tot;
(h): electron and proton adiabatic, Mye ad + Muyi ad; (1): electron and proton irreversible, Muye irr + Muyi,irr-
The simulations shown here use a mass ratio m;/me = 25 and magnetization o,, = 0.1. As in earlier plots,
blue, green, and red points correspond to simulations with upstream T, /7; ratios of 0.1,0.3, and 1.
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3. Electron and proton heating in transrelativistic
guide field magnetic reconnection

Text in this chapter was originally published in:
AplJ, 873, 2, (2019; Rowan, M., Sironi, L., & Narayan, R.).

3.1 Abstract

The plasma in low-luminosity accretion flows, such as the one around the black hole at the center
of M87 or Sgr A* at our Galactic Center, is expected to be collisioness and two-temperature, with
protons hotter than electrons. Here, particle heating is expected to be controlled by magnetic
reconnection in the transrelativistic regime o,, ~ 0.1-1, where the magnetization o, is the ratio
of magnetic energy density to plasma enthalpy density. By means of large-scale 2D particle-in-cell
simulations, we explore for a fiducial o,, = 0.1 how the dissipated magnetic energy gets partitioned
between electrons and protons, as a function of ; (the ratio of proton thermal pressure to magnetic
pressure) and of the strength of a guide field By perpendicular to the reversing field By. At
low B (< 0.1), we find that the fraction of initial magnetic energy per particle converted into
electron irreversible heat is nearly independent of By/By, whereas protons get heated much less
with increasing Bg/By. As a result, for large By /By, electrons receive the overwhelming majority
of irreversible particle heating (~93% for By/By = 6). This is significantly different than the
antiparallel case By/Bg = 0, in which electron irreversible heating accounts for only ~18% of the
total particle heating (Rowan et al., 2017). At 5; ~ 2, when both species start already relativistically
hot (for our fiducial o,, = 0.1), electrons and protons each receive ~50% of the irreversible particle
heating, regardless of the guide field strength. Our results provide important insights into the
plasma physics of electron and proton heating in hot accretion flows around supermassive black

holes.
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3.2 Introduction

When black holes accrete at much below the Eddington limit they tend to be radiatively inefficient,
and the resulting accretion flows become extremely hot (see Yuan & Narayan 2014 for a review). Hot
accretion flows are particularly common in the large population of low-luminosity active galactic
nuclei (Ho 2008). Two members of this population, viz., Sagittarius A* (Sgr A*)—the black hole
at the center of our Galaxy—and the supermassive black hole in M87, are primary targets of the
Event Horizon Telescope (EHT, Doeleman et al. 2008, 2009), and are of special interest at the
present time. These systems, and many others like them, can be modeled within the framework
of advection-dominated accretion flows (ADAFs, Narayan & Yi 1995a; alternatively, radiatively
inefficient accretion flows, RIAFs, Stone et al. 1999; Igumenshchev et al. 2003; Beckwith et al. 2008).
However, detailed models, suitable for comparison with observations, require an understanding of
electron heating in the accreting plasma, given that the observed emission is powered by electrons;
yet, a detailed understanding of electron microphysics is currently lacking.

The key feature of a hot accretion flow is that the accreting gas heats up close to the virial
temperature, causing the flow to puff up into a geometrically thick configuration and the plasma
to become optically thin. Because of the low gas density, the plasma is largely collisionless, i.e.,
Coulomb collisions between charged particles are negligible. Furthermore, at radii inside a few hun-
dred Rs = 2GM/c?, where M is the mass of the black hole and Rg is the Schwarzschild radius, the
plasma becomes two-temperature, with the protons substantially hotter than the electrons (Yuan
et al., 2003). The two-temperature nature of the gas in an ADAF is a generic prediction for several
reasons: first, electrons radiate much more efficiently than protons. Second, coupling between pro-
tons and electrons via Coulomb collisions is inefficient at low densities. Lastly, compressive heating
favors nonrelativistic protons over relativistic electrons.

Despite these strong reasons, the plasma could still be driven to a single-temperature state if there
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were additional modes of energy transfer (beyond Coulomb collisions) from protons to electrons.
Several mechanisms of energy transfer in collisionless accretion flows have been proposed, including
weak shocks, turbulence, and magnetic reconnection (Quataert & Gruzinov, 1999; Howes, 2010;
Yuan et al., 2002; Sironi & Narayan, 2015; Sironi, 2015; Werner et al., 2016; Rowan et al., 2017;
Kawazura et al., 2019; Zhdankin et al., 2019). In the present work, we focus on the last of these
possibilities, i.e., magnetic reconnection.

Magnetic reconnection plays an important role in the energy dynamics of numerous astrophysical
systems, for example, relativistic jets, hot accretion flows (ADAFSs), and coronae above stellar and
accretion disk photospheres. Many of these systems tend to be magnetically dominated, in the sense
that Bi = Paas/Pmag S 1 (here, Pyas = nokpTio is the thermal pressure of protons, with density nyg
and temperature Tjg, and Ppag = Bg /87 is the magnetic pressure, with By the magnitude of the
reconnecting magnetic field). As a result, the magnetic field is the primary (or at least major) energy
reservoir, and energy dissipation may proceed via reconnection. Although hot accretion flows and
disk coronae are magnetically dominated (i.e., low-beta plasmas), the magnetization o, = 2Ppag/w
is typically small, with o, < 1; here, w = (peo + pio)c® + FeoUeo + Hioio is the enthalpy density
per unit volume, and pesy = Mmeng, pio = Mino, Ye0, Yio, and Uep, ujg are the rest-mass densities,
adiabatic indices, and internal energy densities, respectively, of electrons and protons. This regime

of i <1 and o, < 1, termed transrelativistic, provides a unique context for the study of magnetic

reconnection, as protons are generally nonrelativistic, whereas electrons can be moderately or even
ultra-relativistic (Melzani et al., 2014; Werner et al., 2016; Ball et al., 2018).

In a previous work, we explored electron and proton heating in transrelativistic reconnection,
for the idealized case of antiparallel fields (Rowan et al., 2017, hereafter RSN17). The important

question of electron and proton heating has been addressed by others as well, especially in the case of

antiparallel reconnection (Melzani et al., 2014; Shay et al., 2014; Werner et al., 2016; Hoshino, 2018).
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The more general, and astrophysically relevant, case of reconnection includes a guide magnetic
field component perpendicular to the plane of the reconnecting field lines. In fact, recent work
suggests that turbulent heating at microscopic dissipation scales may be ultimately mediated by
reconnection (Boldyrev & Loureiro, 2017; Loureiro & Boldyrev, 2017; Mallet et al., 2017; Comisso
& Sironi, 2018; Shay et al., 2018). In turbulent systems like accretion flows, turbulent eddies get
naturally stretched into thin current sheets, which at small scales become susceptible to the tearing
mode instability, which in turn drives reconnection. At sufficiently small scales, one may then
expect that energy dissipation in turbulence is mediated by reconnection. At these small scales,
the guide field has the same strength as at large scales, yet the strength of the reversing fields
becomes smaller at progressively smaller scales in the turbulent cascade. Our work, which focuses
on guide field reconnection (up to the regime of strong guide fields), has then broader implications
for energy dissipation in a turbulent cascade.

In nonrelativistic reconnection, it has been demonstrated through direct measurements, fully-
kinetic and gyrokinetic simulations, and analytical theory, that the strength of the guide field
heavily impacts the energy partition between electrons and protons. In the strong guide field limit,
electrons receive a larger fraction of dissipated magnetic energy than protons (Dahlin et al., 2014;
Numata & Loureiro, 2015; Eastwood et al., 2018). However, for the transrelativistic electron-proton
plasma relevant to hot accretion flows and disk coronae, the question is under-explored, yet crucially
important for obtaining predictions that can be compared to observations.

To explore the effect of a guide field in transrelativistic reconnection, we use fully-kinetic particle-
in-cell (PIC) simulations, which are capable of capturing the fundamental plasma physics that
controls electron and proton heating in collisionless systems. The PIC method captures from first
principles the interplay between charged particles and electromagnetic fields at the basis of reconnec-

tion, thereby resolving plasma processes that are out of reach for large-scale magnetohydrodynamic
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simulations of accretion disks.

In this paper, we investigate the effect of a guide field on electron and proton heating via
reconnection in the transrelativistic regime. We study the dependence of the heating efficiency
on the initial plasma properties, by varying the guide field strength and the proton-5;. For our
main runs, we choose g, = 0.1 as our fiducial magnetization, and the initial electron-to-proton
temperature ratio is set to Teo/Tio = 1. In a few selected cases, we also vary the temperature ratio
(Teo/Tio = 0.1 and 0.3), as well as the magnetization (o, = 1). We employ the realistic mass ratio
in all our simulations.

The rest of this paper is organized as follows. In Section 3.3, we describe the setup and initial
conditions of our simulations. Next, in Section 3.4, we explain our technique for measuring electron
and proton heating at late times, when the energy of bulk motions driven by reconnection has
thermalized. Then, in Section 3.5, we summarize the main results of electron and proton heating
in guide field reconnection. We conclude in Section 3.6.

3.3 Simulation setup

We use the electromagnetic PIC code TRISTAN-MP (Spitkovsky, 2005), which is a parallel version
of TRISTAN (Buneman, 1993), to perform numerical simulations of magnetic reconnection. Our
simulations are two-dimensional (2D) in space, however all three components of particle momenta
and electromagnetic fields are evolved. In this section, we describe the setup for our simulations of
guide field reconnection. The simulation setup is similar to that described in Sironi & Spitkovsky
(2014), RSN17, and Ball et al. (2018) for the study of antiparallel reconnection.

Simulation coordinates are as follows: the xy plane is the simulation plane; the antiparallel field
is along x, and the inflow direction is along y; a guide component of magnetic field points in the z
direction. The initial field configuration is sketched in Fig. 3.1.

The profile of the antiparallel component of magnetic field is set as Bap, = —Bp tanh(27y/Acs)X.
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Figure 3.1: Ilustration of the initial setup for simulations of guide field reconnection. The antiparallel
component of reconnecting field lines, shown by white arrows and aligned along x, reverses from the red to
the blue region. A guide component of magnetic field, shown by black arrows, is superposed perpendicular
to the plane of antiparallel reconnection (the xy plane). At initialization, the thermal pressure of hot and
overdense plasma (green region) balances against magnetic pressure from outside the current layer. While
our simulations are two-dimensional in space, particle momenta and electromagnetic fields are evolved in
all three dimensions.

The parameter A controls the width over which the antiparallel field B, reverses; we usually set

Acs = 30 ¢/wpe, where c¢/wpe is the electron skin depth,

/ 2
c Vo0 M
— =y —s. 3.1
Wpe 4dmngpe? (3.1)

Here, yeoome is the electron mass (including relativistic inertia), Yoo = 1 4 ueo/ (nomeCQ), Uep 1S the
initial electron internal energy density, ng is the number density of electrons (as well as protons) in
the inflow, and e is the electron charge. In all simulations, we use c¢/wpe = 4 (we refer to RSN17
for tests of convergence with respect to the choice of ¢/wpe). The magnitude of the antiparallel
magnetic field By is controlled via the magnetization

Bg
Op = —2-
Y 4w’
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where

w = ng(me + mi)e® + Feotieo + Fiotio (3.3)

is the specific enthalpy density of the inflowing plasma; 4.9, %o are the initial adiabatic indices,
and uep, ujp are the initial internal energy densities of electrons and protons. This definition of
magnetization differs (only when plasma is relativistically hot) from the one commonly used in
studies of nonrelativistic reconnection,
2
By

o= ———>5 (3.4)

dtngm;c?’

For nonrelativistic temperatures o,, = o, however for relativistically hot plasma, Eq. (3.2) includes
the effects of relativistic inertia in the denominator, so that o, < o; in general. In our simulations,
we fix 0y, = 0.1 (except for a few cases with o, = 1, which we explore in Sec. 3.5.4).

In addition to the antiparallel field, a guide magnetic field component is initialized perpendicular
to the plane of antiparallel field lines, i.e., By = BgZ. The strength of the guide field is parametrized

by the ratio

by = By/Bo, (3.5)

where B, is the magnitude of the guide field (uniform throughout the domain) and By is the
magnitude of the antiparallel field. We vary b from 0 to 6 (i.e., from the antiparallel case to the

strong guide field regime).
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Particles in the upstream region are initialized according to a Maxwell-Jiittner distribution,

(7, 6s0) o< /7?2 — Lexp(—v/6s0), (3.6)

where 0y, s € {e, i}, is the initial dimensionless temperature of the respective particle species:
00 = kpTeo/mec? and i = kpTio/mic®. The combination of proton dimensionless temperature ;g
and magnetization o; determines the value of proton-g;,

8mnokpTio 26
0 Oi

: (3.7)

Our simulations have f; in the range 5 x 10™% to 2. For each value, we explore a range of by between
and 6.

Magnetic pressure within the current sheet is smaller than that on the outside. To ensure pressure
balance, a population of hot and overdense particles is initialized in the current sheet. From the
pressure equilibrium condition, the temperature of overdense particles in the current sheet, T, is
given by kpTe.s/mic? = oi/2n, where 7 is the overdensity of particles in the current sheet, relative
to that of the inflowing plasma, ng. We use n = 3. Electrons and protons in the current sheet are
assumed to have the same temperature.

Parameters associated with each of the main runs are indicated in Tab. 3.1. In these simulations,
we employ the physical mass ratio, m;/m. = 1836, and an initial electron-to-proton temperature
ratio in the upstream of Teo/Tip = 1. In two cases (see Sec. 3.5.4), we also consider Teo/Tip = 0.1
and 0.3, to illustrate the dependence of our results on temperature ratio.

Reconnection is triggered at the center of the box (x ~ 0, y ~ 0), by artificially removing the
pressure of the hot particles initialized in the current sheet. This leads to the formation of an

X-point. From this central X-point, the tension of reconnected field lines ejects the plasma to
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the left and to the right, along x. We use periodic boundary conditions along z, so the outflows
from the two sides (i.e., the moving plasma ejected along x by the field line tension) meet at the
boundary, where their collision forms a large magnetic island (we shall call it “primary island” or
“boundary island”). Here, particles and magnetic flux accumulate, as more plasma reconnects and
is ejected along the outflows (this is discussed in detail in Sec. 3.4.1). Along the y boundaries, we
use two moving injectors (each receding from y = 0 at the speed of light) to introduce fresh plasma
and magnetic field; the domain is enlarged when the injectors reach the y boundaries. We refer to
RSN17 for further details.

In the present work, we measure electron and proton heating at late times, when the particle
internal energies have reached quasi-steady values.! The primary island is the site where we extract
our heating measurements, which requires to run the simulations for a sufficient time such that the
outflows from opposite sides of the central X-point meet at the boundary and form the island.
The choice of extracting our heating efficiencies from particles residing in the primary island has
advantages and disadvantages. The main disadvantage is that it does not allow to directly probe the
heating that results solely from reconnection physics (which was the focus of RSN17), as it includes,
e.g., heating due to shocks generated by the colliding reconnection outflows. On the other hand,
our choice is the most appropriate for modeling realistic macroscopic systems, since reconnection
outflows are expected to eventually come to rest, and their bulk energy to thermalize (e.g., this is
expected in systems like accretion flows, for which the dynamical time and length scales are much
larger as compared to that of the reconnection microphysics).

We run our simulations up to t/tp =~ 3-4, where tn = L,/va is the Alfvénic crossing time for

a box of length L, along the x direction; va = c\/0y/(1+ 0y) is the Alfvén speed.? In all the

!Thanks to our choice of periodic boundary conditions along z, we are able to track the particle energies
for extended times, and thus assess the time-asymptotic heating efficiency.
2Note that this definition does not include the effective inertia of the guide field, which could be accounted

for by defining an effective Alfvén speed as va e = c\/aw/[l + 0w (1 +02)].
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cases considered here (even the high guide field cases by 2 3, for which the onset of reconnection is
delayed due to the large magnetic pressure in the current sheet), we find that evolving the system
for around 3-4 Alfvénic crossing times is sufficient for the measured temperatures in the primary
island to attain quasi-steady values. The procedure for measuring the heating efficiency is further
described in Sec. 3.4.

We find that the time-asymptotic heating efficiencies (especially for protons) are sensitive to
the z-extent of the domain, if the box is not large enough. In this case, plasma that is ejected
along x, away from the center, does not have enough time to reach the expected terminal velocity
before stopping at the boundaries. It follows that particle heating in the primary island (which also
includes the contribution from thermalization of bulk outflow energy) can be artificially inhibited if
the domain is too small. We find that a box size L, ~ 2160 ¢/wyp. is large enough to guard against
this effect, and this is the value we use in our simulations; convergence of our heating results with

respect to the domain size L, is discussed in App. 4.A. In units of the proton skin depth,

i 0. ~1/2 0, 1/2
P m<1+ 0 ) (H-A 0 ) ) (3.8)

Wpi  Wpe\ Me Yeo — 1 Yo — 1

the adopted box size corresponds to at least L, ~ 51 c/wpi, with this lower limit achieved at low ;.
For higher values of §;, the proton skin depth approaches the electron skin depth, and the x-extent
of the domain approaches L, ~ 2160 c¢/wyp;. For each value of /3, the box size L,, in units of ¢/wy;,
is listed in Tab. 3.1.

We use a sufficient number of computational particles per cell Ny, to ensure that numerical
heating is negligible with respect to measured heating efficiencies (see Sec. 3.5.3; we refer also to
RSN17 for convergence tests). For f3; in the range 5 x 107 to 0.5, we use Nppe = 16, and for §; = 2,

we use a larger value, Nppc = 64.

90



Run ID: b5e-4.bg0 b3e-2.bgo b5e-1.bg0o b2.bgo
Bi 4.9 x 1074 0.031 0.5 2.0
bg 0 0 0 0
Oio 2.4 x107° 0.0016 0.031 0.39
0c0 0.045 2.9 55 690
O 0.1 0.1 0.12 0.36
Nppe 16 16 16 64
¢/wpi 170 58 14 5.0
T'Le0 0.063 0.5 2.0 4.0
TLi0 2.6 7.2 6.7 4.9
Llc/wpi] 51 149 617 1728
Run ID: b5e-4.bg3e-1 b3e-2.bg3e-1 b5e-1.bg3e-1 b2.bg3e-1
bg 0.3 0.3 0.3 0.3
T'Le0 0.060 0.48 1.9 3.8
TLio 2.5 6.9 6.4 4.7
Run ID: b5e-4.bg6e-1 b3e-2.bg6e-1 b5e-1.bg6e-1 b2.bg6e-1
bg 0.6 0.6 0.6 0.6
T'Le0 0.053 0.43 1.7 3.4
TLi0 2.2 6.2 5.8 4.2
Run ID: b5e-4.bgl b3e-2.bgl b5e-1.bgl b2.bgl
bg 1 1 1 1
T'Le0 0.045 0.35 1.4 2.8
TLi0 1.8 5.1 4.7 3.5
Run ID: b5e-4.bg3 b3e-2.bg3 b5e-1.bg3 b2.bg3
bg 3 3 3 3
T'Le0 0.02 0.16 0.63 1.3
TLi0 0.82 2.3 2.1 1.6
Run ID: b5e-4.bg6 b3e-2.bg6 b5e-1.bg6 b2.bg6
bg 6 6 6 6
T'Le0 0.010 0.082 0.33 0.66
TLio 0.43 1.2 1.1 0.81

Table 3.1: Parameters and values associated with our main simulations, described in Sec. 3.3. The Run
ID for each simulation is composed of the value of proton-3; and guide field strength b,. The electron and
proton Larmor radii (rpep and rijg) are measured in the upstream. Parameters listed for antiparallel
simulations (those ending in bg0), but not stated for nonzero guide field cases, are implied to be the same.
In all cases, L, = 2160 ¢/wpe, ¢/wpe = 4, mi/me = 1836, T¢o/Tip = 1, and o, = 0.1.
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Figure 3.2: Time evolution of a simulation with 8; = 5 x 107 and by = 1 (b5e-4.bgl in Tab. 3.1). The
first, second, and third columns show particle number density (in units of initial number density in the
upstream), charge non-neutrality, and electric current density along z, in units of initial z-current in the
reconnection layer; the quantities shown here are computed in the simulation frame. The snapshots are
shown at t/ty = 0.1,1.1,2.1, and 3.1 (equivalently, twp. &~ 7.1 x 102,7.8 x 103,1.5 x 10% and 2.2 x 10%) in
the first through fourth rows, as indicated on the right hand side.

3.4 Measurement of late-time heating
In Sec. 3.4.1 we discuss the time evolution of the reconnection layer, and in Sec. 3.4.2 we discuss
the measurement of late-time heating in the primary island.
3.4.1 Time evolution of the reconnection layer
In Fig. 3.2, we show snapshots covering the time range t/tx = 0.1-3.1 for a simulation with
Bi = 5 x 10* and moderate guide field, by =1 (run b5e-4.bgl in Tab. 3.1). In the first, second,
and third columns, respectively, we show the number density n (in units of total upstream density,
2np), the degree of charge non-neutrality (i.e., the ratio of charge density to particle number density,
(ni —ne)/(ni + ne)), and the z-component of current density, normalized to the initial value in the
current layer, j,/j.0; the gray contours show magnetic field lines.

The time evolution is illustrated from the first to the fourth row (e.g., panels A-D). After

reconnection is triggered at x ~ 0, an X-point forms. From the central X-point, two reconnection
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fronts, dragged by magnetic tension, recede from the center; for the simulation shown in Fig. 3.2,
the speed of recession is 0.31¢ ~ /0, ¢, so the expected Alfvén limit is saturated. Since we use
periodic boundary conditions, the receding fronts meet at x = £1080 ¢/wp, after about one Alfvénic
crossing time (second row), and merge into a volume of particles and magnetic flux that continues
to grow as reconnection proceeds. As anticipated, we refer to this structure as the primary island,;
it is the main site where we extract our heating measurements, since this is where particles ejected
from the outflow region eventually end up. Up to the runtimes of our simulations, the primary
island tends to maintain an oblong shape (elongated along x), a feature that is more prominent for
stronger guide fields.

Secondary islands, as opposed to the primary island, form frequently at low 5; in the exhaust
region (or equivalently, in the outflow region); the formation of secondary islands is suppressed at
high ;i (Daughton & Karimabadi, 2007; Uzdensky et al., 2010; RSN17). We find that simulations
with high guide fields are characterized by a relative absence of secondary islands, as compared to
simulations with the same f; but weaker guide fields.

The current layer in guide field reconnection is characterized by left-right and top-bottom asym-
metry, especially in the exhaust region, immediately downstream of the central X-point. Electrons
and protons are ejected from the X-point toward different directions: for our magnetic geometry,
electrons to the upper-left and lower-right quadrants, whereas protons are sent to the upper-right
and lower-left ones (see panels E-H, which zoom into the central region of panels A-D) (Zenitani
& Hoshino, 2008). The z-current (third column) is inhomogeneous in the immediate downstream
(see panels I-L); there is some enhancement along the walls of the exhaust (at the interface with

the upstream), in particular along the directions that electrons leave the X-point.
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Figure 3.3: 2D plots (from simulation b5e-4.bgl in Tab. 3.1) of (A) ratio of top-to-total particle num-
ber density, (B) the z-component of magnetic vector potential, and (C) separation into island (yellow),
non-island downstream (tan), and upstream (navy) regions; cells containing particles that are part of the
hot overdense population left over from initialization are excluded from the island region, and typically
reside at the island core (grey region at the center of the yellow island region in panel C). In panel B, two
contours corresponding to A, = 0.6 and 0.7 are plotted (solid black lines) to illustrate the typical shape
of magnetic field lines in the primary island (here, units are arbitrary; A, is normalized to be between 0
and 1). The dashed white contours in panel (C) show the parts of the upstream used to measure inflow
quantities. The yellow region that we use for the computation of heating efficiencies in the primary island
is defined by criteria (i), (i) and (%) described in the text.
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Figure 3.4: Time dependence of irreversible heating fractions Mye i (blue) and My ;,y (red) for simula-
tion b3e-2.bg3. The yellow shaded region indicates the time interval used to compute the time-averaged
values.

3.4.2 Measurement of particle heating in the primary island
To assess the heating efficiency at late times, we focus on the change in particle internal energy, as
particles travel from the inflow region (i.e., the upstream) to the far downstream, and eventually
enter the primary island (these different regions are defined in more detail below). Internal energy
and temperature in each cell of the simulation domain are calculated as in RSN17; here we briefly
review the method, but we refer the reader to RSN17 for more details.

The internal energy is computed by treating the plasma as a perfect, isotropic fluid,? whose

stress-energy tensor is:

TH = (es + ps) UFUY — psg"”, (3.9)

where e;=nymsc? + us, ps, UL, and gM¥ are the rest-frame energy density, pressure, dimensionless
four-velocity, and flat-space Minkowski metric, and the subscript s denotes the particle species; 7

is the rest-frame particle number density. From Eq. (3.9), the dimensionless internal energy per

3Though we assume isotropy here, our measurements are not significantly affected by this assumption, as
we discuss in Sec. 3.5.6.
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particle in the fluid rest frame vg can be written as

(TL(?O/ngmsc2 = 1)
1+ ’A)/S(Us)(rg - 1)

(3.10)

Vg =

Here,* T is the lab-frame energy density, n, is the lab-frame particle number density, I'y is the
Lorentz factor computed from the local fluid velocity, 4 is the adiabatic index, and the subscript
s € {e, i} indicates the type of particle (electron or proton). Note that the adiabatic index 4s(vs) is
a function of the specific internal energy. Given a mapping between the specific internal energy and
adiabatic index, Eq. (3.10) can be solved iteratively for v,. For adiabatic index, we use a function
of the form

A+ Bug
C + Dv,’

A~

Ys(vs) = (3.11)

where A ~ 1.176,B ~ 1.258,C =~ 0.706, and D =~ 0.942. The numerical coefficients satisfy
A/C = 5/3 and B/D = 4/3 in the nonrelativistic (vs — 0) and ultra-relativistic (v — o0)
limits, respectively; see Eq. 14 of RSN17 for additional details. The adiabatic index in Eq. (4.90)
is used to convert between specific dimensionless internal energy and dimensionless temperature:
0, = [s(vs) — 1Jus.

In the following, we refer to “downstream” as the combination of the outflow region and the
primary island. We select only part of the downstream to compute the late-time particle heating, in

particular part of the primary island, which is far from the central X-point. The region is selected

4To employ Eqs. 3.9 and 3.10, one must choose which frame to boost to; the rest-frame stress-energy
tensor is computed from the lab-frame one via Lorentz transformations, 7% % = A, (va)A? (va)TH, where
vg is the local fluid velocity. This does not necessarily ensure that 707 = 779 = 0, so we have tested a
more precise, also more expensive, calculation, i.e., solving for v from T%# = A9, (v)AB (v)TH, subject to
the constraints 70" = 770" =0 (by symmetry of the stress-energy tensor, these are three equations). The
solution of these equations yields a boost A(v) which ensures 70 % = 0. However, whether we boost to the
frame defined by vy or v, our results are unchanged.
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based on three criteria: (7) the mixing between particles originating from the top (y > 0) and
bottom (y < 0) of the domain must exceed a chosen threshold (and be less than the complementary
threshold): din, < Mop/Ntot < 1—den (RSN1T7), (47) the z-component of the magnetic vector potential
must exceed a value, A, > A, ,, which is related to the mixing threshold identified in (¢) (Li et al.,
2017b; Ball et al., 2018), and (7%) cells containing particles that were part of the hot, overdense
population initialized in the current sheet (see Sec. 3.3) are excluded, since their properties depend
on arbitrary choices at initialization. The use of the above criteria for selection of the “island”
region is illustrated in Fig. 3.3. Panel A shows the ratio of density of particles originating from
the top of the domain, np, to the total density nio;. The part of the downstream that has mixed,
according to (7) above, is shown in panel C by the combination of grey, yellow and tan regions.
To select the island area, which is a subset of the mixed region, we find cells at the boundary
r = £1080 c/(,upe that satisfy di, < ngop /Mot < 1 — di, and of those cells, we select the ones at
the upper and lower edges of the island (along +y). In these cells, we compute the average value
of the vector potential A, s, to serve as a second threshold for selection of the island region (panel
B). The island cells are then identified as those where there is sufficient mixing (criterion (7)), and
where A, > A, 4, (criterion (éi)). We also impose a strict spatial cutoff on the island region, to
ensure that it is distinct from the exhaust even at late times (see RSN17 for details). This criterion
corresponds in panel C of Fig. 3.3 to excluding the tan regions at |z[< 430 c/wpe. Finally, from
the island region, we exclude any cells where the density of the hot, overdense particles used for
initialization (see Sec. 3.3) is greater than zero (criterion (#i7)), so that the measured heating does
not depend on particles whose properties are set by hand as initial conditions. These initial particles
generally reside in the island center (see the grey core in panel C). The region that satisfies all our
criteria (which we shall call “island region” for brevity) is shown in panel C of Fig. 3.3 as the yellow

area.
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The method of island selection outlined here is a robust and consistent way of selecting cells
that are far downstream of the central X-point, for all guide field strengths we consider, and it is
relatively insensitive to the choice of threshold value di,. For example, A, differs by no more
than 10% for dy, in the range 0.003-0.3; the overall measured values of particle heating in the
island show comparable sensitivity to the choice of diy, at a level of around 15% for d;p, in the range
0.003-0.3. For island selection, we find that di, = 0.3 is suitable.

To assess particle heating, we measure the change in particle internal energies, as they travel
from the inflow to the island region (described above). The upstream region is defined such that
Nop/ Mot < dthup OF Ntop/Ntot > 1 — dihup (S0, a complementary definition to the mixing criterion
(i) above). We employ a threshold value diy, yp = 3 X 1075; the fact that dihup < din provides a
thin (~few ¢/wpe) buffer region between the downstream (tan and yellow areas combined in panel
C of Fig. 3.3) and the upstream (navy region in panel C of Fig. 3.3). We further select only those
upstream cells lying within £100 ¢/wpe of y = 0 (as delimited by the dashed white contours in panel
C of Fig. 3.3).

With the inflow and island regions suitably identified, overall heating fractions can be computed
as the difference between the dimensionless internal energies in the island and inflow regions, nor-

malized to the inflowing magnetic energy per particle (Shay et al., 2014; RSN17):

_ Ve,isl — Ve,up
Mue,tot = ; (312)
aimi/me
_ Vsl — Viup
Mui,tot = o . (313)
i

These dimensionless ratios indicate the fraction of magnetic energy per particle in the inflow that
is converted to particle heating, by the time the particle reaches the island, far downstream of the

central X-point. As in RSN17, the heating fractions in Eqs. 3.12 and 3.13 can be decomposed into
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adiabatic-compressive and irreversible components,

Mue,tot = Mue,ad + Mue,irra (314)

Mui,tot = Mui,ad + Mui,irr- (315)

The adiabatic heating fractions represent the heating that results solely from an increase in internal
energy due to adiabatic compression of the plasma as it travels from the inflow to the island; for

electrons, the adiabatic heating fraction is approximately® (RSN17)

(Zizl>%_1 - 1] . (3.16)

where njq is the typical electron density in the island. The irreversible heating fractions are asso-

1 T

Mue,ad ~ 5511-‘70
i

ciated with a genuine increase in the entropy of the particles, and are of primary interest to us.
The measured heating fractions we present in Sec. 3.5 are typically time-averaged over one Alfvénic
crossing time (= 7100 w;el).

A representative temporal evolution of electron and proton irreversible heating fractions, Mye irr
and My irr, is shown in Fig. 3.4. The time evolution of the heating fractions is shown from ¢/ ¢ty =0
to t/ta =~ 3.5; at late times, the heating fractions achieve a steady state (i.e., both the electron and
proton irreversible heating fractions are relatively flat after ¢/tp ~ 2.5). Time-averaged heating
fractions are computed during this steady state; the points used for time-averaging are indicated

by the shaded region in Fig. 3.4.

5This is an approximation because Eq. (3.16) assumes a constant adiabatic index 4e; in reality, when
calculating M,,e a4, We properly account for the possibility of a changing adiabatic index, as is appropriate
for electrons that start nonrelativistic in the upstream, but are heated to ultra-relativistic temperatures by
the time they reach the island.
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3.5 Results

In this section, we discuss our measurements of electron and proton heating in the primary island,
and their dependence on guide field strength b, and upstream proton-3;. In Sec. 3.5.1, we focus on
one low and one high f; case, and explore the effect of guide field strengths b, in the range 0.3-6.
Next, in Sec. 3.5.2, we show the dependence of the reconnection rate on f; and the guide field.
In Sec. 3.5.3, we present comprehensive results of electron and proton heating, extracted from a
suite of simulations that span the whole parameter space by = 0-6 and 3; = 5 x 10~%-2. Here, we
focus on the case of equal initial electron and proton temperatures in the upstream, Teo/Ti0 = 1.
For these simulations, the magnetization is o, = 0.1. In Sec. 3.5.4, we present several results of
irreversible electron heating from simulations with temperature ratios in the range Teo/Tip = 0.1-1,
as well as several cases with o, = 1. Next, in Sec. 3.5.5, we a provide a fitting function for the
electron irreversible heating efficiency, based on the simulation results presented in Secs. 3.5.3 and
3.5.4. Then, in Sec. 3.5.6, we discuss the degree of anisotropy in the particle distribution (as a
function of by and f;), and its effect on the accuracy of our results. Lastly, in Sec. 3.5.7, we discuss
an application of the guiding-center formalism to dissect the mechanisms responsible for electron
heating at low f;.

3.5.1 Electron and proton heating: weak vs. strong guide field

Electron and proton heating via reconnection shows substantial differences in the limits of strong
and weak guide field. Fig. 3.5 shows 2D snapshots at ¢/ ta = 2.7 of electron (panels A—C) and proton
(panels D-F) temperature,% and corresponding 1D profiles (panels G-I), for three simulations with
a relatively low 3; = 0.03 and guide field strengths b, = 0.3, 1, and 6, increasing from left to right.

The simulations here correspond to runs b3e-2.bg3e-1, b3e-2.bgl, and b3e-2.bg6 in Tab. 3.1.

6Here, we phrase our results in terms of temperature, rather than internal energy; however, similar
conclusions hold regardless of which quantity is considered (in this section as well as in the rest of the

paper).
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Figure 3.5: Comparison of electron and proton heating for guide fields b, = 0.3 (first column), by = 1
(second column), and by = 6 (third column); f; ~ 0.03 for these simulations, which correspond to b3e-
2.bg3e-1, b3e-2.bgl, and b3e-2.bg6 in Tab. 3.1. The first, second, and third rows show 2D plots of
electron temperature, 2D plots of proton temperature, and 1D profiles (averaged along y, for cells in the
downstream) of electron (blue) and proton (red) temperature. In the bottom row, the dashed black line
shows the initial temperature in the upstream. Vertical cyan dashed lines indicate the x boundaries of

the island region; no cells between the cyan lines are counted as part of the island region. Note that the
electron and proton temperatures are both normalized to m;c?. The snapshots are shown at time ¢/ty =
2.7 (equivalently, twpe &= 2 x 10%). 1D profiles are slightly smoothed for clarity. An animated version of this

figure is available from the online journal.
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Figure 3.6: The layout is similar to Fig. 3.5. Comparison of electron and proton heating for guide fields
by = 0.3 (first column), b, = 1 (second column), and by = 6 (third column), but for 3; ~ 2; these are
simulations b2.bg3e-1, b2.bgl, and b2.bg6 in Tab. 3.1. The first, second, and third rows show 2D plots
of electron temperature, 2D plots of proton temperature, and 1D profiles of electron (blue) and proton
(red) temperature; here, temperatures are normalized to m;c?>. The meaning of dashed black and cyan
lines is as in Fig. 3.5. The snapshots are at time t/tp = 3.1 (twpe ~ 2.2 x 10%). 1D profiles are slightly
smoothed for clarity. An animated version of this figure is available from the online journal.
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The first and second rows show the spatial dependence of electron (panels A-C) and proton
(panels D-F) heating. At low by (run b3e-2.bg3e-1), the electron and proton temperatures are
relatively uniform in the exhaust and island regions. For intermediate guide field strengths (run b3e-
2.bgl), the electron and proton heating is less uniform in the island, and shows marked a asymmetry
in the exhaust region (see panels B and E, in between the cyan lines). For the strong guide field case
(run b3e-2.bg6), electrons reach a maximum temperature of roughly kpT,/m;c? ~ 0.02 along the
upper-left and lower-right edges of the outflow; on the other hand, proton heating along the exhaust
is essentially isolated to the upper-right and lower-left edges. Throughout the entire downstream
(for run b3e-2.bg6), the proton temperature rarely exceeds kgT}/m;c® ~ 5 x 1073.

The 2D plots in panels A-F also illustrate that the primary island becomes more oblong with
increasing guide field. For by = 0.3, the aspect ratio of the island (length along the layer to width
orthogonal to it) is about 7 : 4, whereas at b, = 6, it is twice as large, 7 : 2. In the cases with
strong guide field the primary islands do not circularize up to the run times of our simulations.

The bottom row of Fig. 3.5 shows the 1D profiles of electron (blue) and proton (red) temperatures,
both in units of m;c?, averaged along y for cells within the downstream region (including the yellow
and tan regions in panel C of Fig. 3.3, and excluding the grey area in the island core that contains
particles left over from initialization). The edges of the primary island are shown by vertical
cyan lines. Horizontal black dashed lines indicate the initial temperature of particles in the far
upstream. In the weak guide field case by = 0.3 (panel G), protons are heated substantially more
than electrons, similar to the case of antiparallel reconnection (see Melzani et al. (2014), Werner
et al. (2016), RSN17). As the strength of the guide field increases (panels H and I), proton heating
in both the exhaust region and the primary island is strongly suppressed. The electron temperature,
on the other hand, is largely unaffected; for by = 0.3, 1, and 6, the electron temperature in the island

is always around kpT,/m;c® ~ 5 x 1073,
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Figure 3.7: Reconnection rate, i.e., the upstream inflow velocity in units of the Alfvén velocity, for the
main simulations in Tab. 3.1. Blue, green, red, purple, yellow, and teal points indicate simulations with
guide fields 0,0.3,0.6,1, 3, and 6 (solid lines are included to guide the eye). The inflow velocity is averaged
in time from ¢/ta ~ 0.7 to 1 (twpe from 5000 to 7100), and spatially over the upstream region (similar to
what is delimited in Fig. 3.3 by the dashed white lines, but see text for details).

Fig. 3.6 is similar to Fig. 3.5, but corresponds to a set of simulations with 5; = 2 (runs b2.bg3e-
1, b2.bgl, and b2.bg6 in Tab. 3.1). As we discuss below, this value of §; = 2 is close to [i max = 2.5
(see Eq. (3.18)), impliying that electrons and protons both start with relativistic temperatures. In
stark contrast to the low ; case, at 8; = 2 the electron and proton temperatures in the island region
are roughly equal, regardless of the guide field strength (by = 0.3-6). Still, the 2D temperature
structure within the island differs between low and high guide field cases. At high £; and low or
intermediate guide field (runs b2.bg3e-1 and run b2.bgl), the electron and proton temperatures
in the island are typically uniform (similar to the low f;, low bg case in panels A and D of Fig. 3.5).
However, at high §; and high guide field (run b2.bg6), the electron and proton temperatures are
less uniform (relative to runs b2.bg3e-1 and b2.bgl; see panels C and F of Fig. 3.5), with electron
and proton temperatures greatest near the interfaces between the primary island and the outflows

(i.e., z = £700 ¢/wpe).
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3.5.2 Reconnection rate

Fig. 3.7 shows the f; and by dependence of the reconnection rate, |vin|/va. The inflow speed |viy|
is computed as a spatial average over a specific region of the upstream,” and temporal average
from t/tp =~ 0.7 to 1 (when reconnection is roughly in steady state). Each point corresponds to
the measurement from a different simulation, and those with the same guide field strength b, are
connected by a solid line. For these simulations, m;/m. = 1836, Teo/Tio = 1, and o, = 0.1.

In most cases, reconnection proceeds at or below the value often reported in the literature, i.e.
[vin|/va S 0.1 (Cassak et al., 2017); however, for low 5 and weak guide field (b < 0.3), the
reconnection rate exceeds this fiducial value, with |vin|/va in the range 0.1-0.15. For by < 0.3,
the reconnection rate shows a relatively weak scaling with f§;, decreasing from |vi,|/va &~ 0.1-0.15
to |vin|/va = 0.05, only a factor of 2-3, as [ increases from 5 X 107% to 2 (Numata & Loureiro,
2015, RSN17, Ball et al., 2018). For guide fields by 2 1, the i dependence of the reconnection
rate is even weaker, and |viy|/va typically varies from 0.01 to 0.07. We find that the presence of
a guide field tends to suppress the reconnection rate, which is a dependence similar to that found
by Melzani et al. (2014) for electron-ion relativistic reconnection, Ricci et al. (2003), Huba (2005),
TenBarge et al. (2013), and Liu et al. (2014) for electron-ion nonrelativistic reconnection, and Hesse
& Zenitani (2007) and Werner & Uzdensky (2017) for electron-positron plasma. The decrease in
the reconnection rate with by is more pronounced at lower values of 3.

3.5.3 Electron and proton heating: b, and 3; dependence

Fig. 3.8 shows the by and f; dependence of electron (panel A) and proton (panel B) dimensionless
temperature. Each solid line shows the volume-averaged temperature in the island for a set of
simulations with the same value of bs, and the black diamonds, connected with a dashed line,

show the upstream temperature for each value of f; (for simulations with fixed 3;, the upstream

"Specifically, in the region where 100 ¢/wpe < |y|< 120 ¢/wpe and |z|< 360 ¢/wpe.
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Figure 3.8: Dimensionless (A) electron and (B) proton temperatures, in units of mec? and m;c?, re-
spectively, measured in the island region (yellow region in Fig. 3.3). The color scheme is the same as in
Fig. 3.7, with different colors indicating simulations with different guide field strength. The black diamond
points show the temperature in the upstream region. The measured temperatures are averaged over ~ 1t
(equivalently, ~ 7100w, ).
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temperature is the same, independent of by). As discussed in Sec. 3.3, the numerical resolution
is sufficient to keep numerical heating under control; temperatures measured in the inflow region
are about the same as the ones at initialization, throughout the duration of our simulations.® The
simulations presented here are the same as those in Sec. 3.5.2, so they employ m;/m, = 1836,
Teo/Tio = 1, and oy, = 0.1.

The upstream electron dimensionless temperatures range from nonrelativistic, 8, ~ 0.08, up to
ultra-relativistic, 6, ~ 700; the temperatures in the downstream region range from moderately to
ultra-relativistic, 6, ~ 6-700.° For all values of f3;, the electron temperature in the island appears
to be nearly independent of the guide field strength (Fig. 3.8, panel A). The guide field simulations
show the same scaling with (; as the antiparallel case (blue circles), with the electron temperature
increasing from about 6, ~ 6 at 3 ~ 5 x 10™* up to 6, ~ 700 at 3; ~ 2. Additionally, the electron
temperature shows only a relatively weak dependence on i, for 5 < 0.5. From 3 ~ 5 x 10~ up to
0.5, the electron temperature in the island changes by no more than a factor of 10 (the dependence
is even weaker for f; < 3 x 1072). At high i, the electron temperature in the island appears to
be nearly the same as that in the upstream. However, the increase in temperature from upstream
to downstream corresponds to a substantial fraction (typically ~30%) of the inflowing magnetic
energy per electron (see Fig. 3.9 below, panel A). These two statements are not in contradiction,
since for high f; the available magnetic energy is only a small fraction of the initial thermal energy.

In Fig. 3.8, panel B, we show the proton dimensionless temperature in the island, for the same

simulations shown in panel A. At low f;, protons show a clear decrease in island temperature with

8Due to numerical heating, the measured upstream temperature 6, ~ 0.08 for the 3 = 5 x 10™* runs
differs from the expected initialized electron temperature, oo = 0.045 (see Tab. 3.1). However, the difference
is much smaller (less than ~15%) in runs with higher §;. Although the upstream numerical heating for
Bi =5 x 1074 is large compared to the temperature at initialization, the resulting upstream temperature is
still much smaller than the downstream temperature, so it has no effect on the heating fractions presented
below. The basic reason is that for low §;, the available magnetic energy (a fraction of which will be
transferred to the particles) is much larger than the initial particle thermal energy.

9This is a consequence of our choice of o, = 0.1; for o,, < 1, the bulk of electrons will not attain
ultra-relativistic energies.
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increasing guide field strength; for antiparallel reconnection (b = 0) and f; ~ 5 x 104, the proton
dimensionless temperature in the island is 6; ~ 0.02, but decreases to #; ~ 6 x 10~ for strong guide
field, by = 6. As (3; increases, the proton heating in the island shows a weaker dependence on guide
field strength. Similar to electron heating in the island at high f;, 6; is nearly independent of b,
at high 5;. The proton dimensionless temperatures, in both the upstream and the island region,
are generally nonrelativistic, #; < 1. In summary, when comparing panels A and B, a striking
difference is that the electron dimensionless temperature in the island is independent of the guide
field strength, whereas the proton dimensionless temperature appreciably decreases with increasing
bg.

In Fig. 3.9 we present the scaling of electron and proton heating with guide field strength b, and
proton-f;. The first and second rows show the electron and proton heating fractions, respectively
(see Egs. 3.12-3.15); the total heating (first column) is decomposed into adiabatic-compressive and
irreversible components, shown in the second and third columns, respectively. In each panel, the
corresponding heating fraction is plotted as a function of §; for guide field strengths in the range
0-6.

The first row in Fig. 3.9 shows the scaling of the electron total, adiabatic, and irreversible
heating fractions (Muye tot, Mue,ad, and Mye i) With respect to by and fi. At low f;, the electron
total heating fraction within the island does not show a strong scaling with the strength of the
guide field (consistent with Fig. 3.8). For f; < 0.03, Myetot ~ 0.1. At high 3, the total heating is
suppressed by strong guide fields, b; 2 3. Some insight into this trend is provided by decomposing
the total heating fraction M, st into adiabatic and irreversible parts, M aq (panel B) and Miye jrr
(panel C). For low f;, compressive heating is negligible; however, at higher values of ;, compressive
heating is more significant, but tends to decrease with stronger guide fields, which is in qualitative

agreement with Li et al. (2018). This result is physically intuitive, as the plasma becomes less
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compressible when the magnetic pressure of the guide field is larger (and in fact, we notice that
the primary island is less dense for stronger guide fields).

To summarize, we find that the electron compressive heating fraction in panel (B) steadily
increases with 3; and strongly decreases with b,. Both trends for Me.q can be easily understood
from Eq. (3.16), given that stronger guide fields give smaller density compressions. In contrast, the
electron irreversible heating fraction (panel C) is largely independent of both b, and f;, and it is
around Myeirr ~ 0.1. The combination of irreversible and compressive heating explains why the
total heating at low f3; is independent of both ; and bs, whereas at high f; it is lower for larger by
(due to the corresponding trend in compressive heating).

The second row in Fig. 3.9 shows the proton heating fractions My; tot, Muiad, and My; i (panels
D, E, and F). The proton total heating in the island differs sharply from the electron total heating
(panel A). The proton total heating shows a strong dependence on the strength of the guide field;
for antiparallel reconnection, My ot ~ 0.3 regardless of 3;, but the total heating is significantly
suppressed as by increases. For by = 6 and 3; < 0.5, My 1ot is negligible. The proton compressive
heating (panel E) shows a trend similar to that of the electron compressive heating (panel B); for
both electrons and protons, the compressive heating is controlled by density in the upstream, density
in the island region, and upstream temperature (here, we focus on the case Ty /Tjo = 1); since these
quantities are similar for electrons and protons, the compressive heating for both species shows the
same trend. The proton irreversible heating (panel F) is similar to the proton total heating (panel
A) for 5 < 0.03, because compressive heating is negligible in this regime. For f; 2 0.03, the
proton irreversible heating is less sensitive to the guide field strength, and by §; = 2, My; i ~ 0.08
regardless of bg, similarly to the electron irreversible heating.

The electron and proton irreversible heating fractions Mye iy and My i can be used to com-

pute the ratio of electron irreversible heating to total irreversible particle heating liberated during
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reconnection (RSN17),

Mue irr
Que,irr = ’ . 3.17
e Mue,irr + Mui,irr ( )

In Fig. 3.10, we present the 8; and by dependence of qye irr, the electron irreversible heating efficiency.
For all £i < 2, que,irr increases with the guide field strength. For antiparallel reconnection, electrons
ultimately receive ~18% of the irreversible heat transferred to particles. As the guide field increases,
so does the fraction of irreversible heating transferred to electrons; for by = 1, gye i ~ 45%, and
by by = 6, electrons receive the vast majority of magnetic energy that is converted to irreversible

particle heating, with gueirr = 93%. At Bi = 2 ~ Bimax; Que,irr = 50%, independently of bg; Bimax

is the maximum possible value of 3, given oy, and Tvo/Tio, and is defined as

0.5

/Bi,max - Ow + UwTeO/,TiO .

(3.18)

This equation is derived by expressing f; as a function of Tey/Tig, 0, and 6;, then taking the limit
0; — oo. For the simulations presented here, with m;/me = 1836, Teo/Ti0 = 1, and o, = 0.1,
we find 3 max = 2.5. Note that for 8; ~ 3 max, electrons and protons start relativistically hot in
the upstream, and the scale separation (c/wpe)/(¢/wpi) is of order unity (RSN17); in this case,
electrons and protons behave nearly the same, which explains why for 3; ~ 3 max we obtain energy

equipartition, i.e., we find that gyeir = 50%, independently of b,.
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Figure 3.9: Guide field b, and proton-3; dependence of electron (A) total, (B) adiabatic, (C) irreversible
heating; proton (D) total, (E) adiabatic, and (F) irreversible heating. The heating fractions are defined in
Sec. 3.4 (see Eqgs. 3.12-3.15). For these simulations, m;/m. = 1836, o, = 0.1, and Ty /Ti0 = 1.

Figure 3.10: Guide field and proton-8; dependence of electron irreversible heating efficiency, qye,irr (se€
Eq. (3.17)). The values plotted here are computed from Me ;yy and My, i,y shown in panels C and F of
Fig. 3.9. Dotted lines show the fitting function in Eq. (3.19) for b, in the range 0-6.

3.5.4 Electron irreversible heating efficiency: T.,/Tiy and o, dependence

For simplicity, we focused in Sec. 3.5.3 on electron heating for cases with representative magnetiza-
tion o, = 0.1 and temperature ratio Teo/Tio = 1. A full exploration of the dependence of electron
and proton heating on f3;, bs, 0y, and Tio/Tio is beyond the scope of this work. Nevertheless, for a

limited range of by and 3;, we present in Fig. 3.11 the electron irreversible heating efficiencies when

we vary the electron-to-proton temperature ratio Teo/Tjp in the range 0.1-1 (panels A and B), as
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well as for several simulations with o,, = 1 (panel C). The physical parameters of these runs are
given in Tab. 3.2.

The effect of varying the initial electron-to-proton temperature ratio for antiparallel reconnection
(bg = 0) is demonstrated in panel A of Fig. 3.11. At low /3, the electron irreversible heating efficiency
shows nearly no dependence on 5; or temperature ratio. At high (;, the dependence on temperature
ratio can be understood via the dependence of f; max on Teo/Tio. According to Eq. (3.18), decreasing
the temperature ratio for fixed o, leads to an increase in fj max, and so (as discussed in Sec. 3.5.2)
in the value of §; ~ 3 max Where equipartition between electrons and protons is realized.

The effect of varying the temperature ratio for by = 0.3 and b; = 6 is shown in panel B. As for
antiparallel reconnection, there is no significant dependence on Ty /T at low fi, for each of the
two by values. While i max = 2.5 for Too/Tio = 1, for Teo/Tigp = 0.3 we expect [imax ~ 3.85, so
equipartition between electrons and protons, which should hold regardless of by at i ~ (i max, is
expected at higher f; than probed in panel (B).

The effect of varying the magnetization and guide field strength is shown in panel C of Fig. 3.11.
At low (5, the electron irreversible heating efficiency has a weaker dependence on guide field for
ow = 1 than for o, = 0.1. For i ~ i max X o,' (see Eq. (3.18)), irreversible heating of electrons

and protons is in equipartition, and this conclusion holds regardless of oy, or bg.
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Run ID: b8e-3.bgh.tle-1 b3e-2.bgh.tle-1 ble-1.bgh.tle-1 b5e-1.bgd.tle-1 b2.bgd.tle-1
Bi 7.8 x 1073 0.031 0.13 0.5 2
bg 0 0 0 0 0
Ow 0.1 0.1 0.1 0.1 0.1
Teo/Tio 0.1 0.1 0.1 0.1 0.1
Run ID: b8e-3.bg0h.t3e-1 b3e-2.bg0o.t3e-1 ble-1.bg0.t3e-1 b5e-1.bg0.t3e-1 b2.bgo.t3e-1
Bi 7.8 x 1073 0.031 0.13 0.5 2
bg 0 0 0 0 0
Ow 0.1 0.1 0.1 0.1 0.1
Teo/Tio 0.3 0.3 0.3 0.3 0.3
Run ID: b3e-2.bg3e-1.t3e-1 b5e-1.bg3e-1.t3e-1 b2.bg3e-1.t3e-1 b3e-2.bg6.t3e-1 b5e-1.bg6.t3e-1 b2.bg6.t3e-1
Bi 0.031 0.5 2 0.031 0.5 2
bg 0.3 0.3 0.3 6 6 6
Ow 0.1 0.1 0.1 0.1 0.1 0.1
Teo/Tio 0.3 0.3 0.3 0.3 0.3 0.3
Run ID: b8e-3.bg3e-1.s1 b3e-2.bg3e-1.s1 b2e-1.bg3e-1.s1 b8e-3.bg6.s1 b3e-2.bg6.s1 b2e-1.bg6.s1
Bi 7.8 x 1073 0.031 0.2 7.8x 1073 0.031 0.2
bg 0.3 0.3 0.3 6 6 6
Ow 1 1 1 1 1 1
Teo/Tio 1 1 1 1

Table 3.2: Physical parameters for simulations with unequal temperature ratios, as well as o, = 1,
described in Sec. 3.5.4.
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Figure 3.11: Similar to Fig. 3.10, but for the simulations listed in Tab. 3.2 rather than Tab. 3.1 (fiducial
cases with o, = 0.1,T¢/Tio = 1 are also shown for reference); dependence of electron irreversible heating
efficiency, gue,irr, for (A) Teo/Tio = 0.1 up to 1 and antiparallel reconnection, (B) unequal initial electron
and proton temperatures in the upstream, Teo/Tio = 0.3, for two guide field cases, by = 0.3 and 6, and (C)
ow = 1, again for by, = 0.3 and 6. As before, dotted lines show the fitting function in Eq. (3.19).
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3.5.5 Fitting function
For use as a sub-grid model of electron heating in magnetohydrodynamic simulations (as in Ressler
et al. (2017a); Chael et al. (2018); Ryan et al. (2018)), we provide the following fitting formula,

motivated by the simulation results presented in Secs. 3.5.3 and 3.5.4:

1
Que,irr,fit (ﬁi? bg7 TeO/ﬂOvaw) = 5 (tanh (033 bg) - 04)
(1= 8/ Brma) ) 1 19

(0.42 + Too/Ti0) 03 ty

1.7 tanh
><7an< 5

where i max is in Eq. (3.18) in terms of o, and Teo/Tjo.

The fitting function in Eq. (3.19) has the following limits: for low (i, qye it aSymptotes to a
(0w~ and bg-dependent) value that does not depend on f;. The asymptotic low-g; limit tends to the
equipartition value qye i 6t ~ 0.5 for o, > 1 (i.e., in the limit of ultra-relativistic reconnection),
regardless of bg. Still at 3; < 1, electrons receive most of the irreversible heat if b, 2 1.3. For
bg > 1, 0, < 1and B < 1, we get queirr,it = 1.0, i.e., all of the irreversible heat goes to electrons.
At B ~ Bimax, the fitting function returns gye jrr.fit ~ 0.5, independent of bg, o, and Teo/Tio. For
bs in the range 0-6, the fitting function in Eq. (3.19) is plotted in Figs. 3.10 and 3.11 as dotted
lines, showing that it matches well the trends obtained from the simulations.

Predictions of the reconnection-mediated heating model presented here differ from those of heat-
ing via a Landau-damped turbulent cascade (Howes, 2010; Kawazura et al., 2019; Zhdankin et al.,
2019). In Fig. 3.12 we show a comparison between reconnection-based heating (Eq. (3.19)) for the
antiparallel (by = 0, panel A) and strong guide field (b; = 6, panel B) cases, and the turbulence-
based heating prescription of Kawazura et al. (2019) (panel C), over the range of plasma conditions
we have investigated. First, one notices that turbulence-based heating is much more similar to
heating via reconnection in the strong guide field limit, rather than in the antiparallel case. In fact,

for the latter (in contrast to the first two), protons are heated much more than electrons at low ;.

114



However, some differences persist even between turbulent heating and heating via strong guide field
reconnection. In fact, the turbulence-based heating model is nearly insensitive to the initial tem-
perature ratio Teo/Tio, whereas for guide field reconnection, an increase in Teo/Tio decreases [i max
(see Eq. (3.18)), which in turn decreases the value of §; at which electrons and protons achieve
equipartition, i.e., gue irr ~ 0.5. More generally, relativistic effects leave a unique fingerprint in our
results at g; ~ Biymax,lo where both species start as relativistically hot, and in the limit o, > 1. In
either case, protons and electrons receive equal amount of the dissipated energy, i.e., que,irr ~ 0.5,
regardless of the guide field strength.

3.5.6 Temperature anisotropy

Guide field reconnection can result in highly anisotropic electron distribution functions at late
times (Dahlin et al., 2014; Numata & Loureiro, 2015). Yet, to determine the dimensionless internal
energy per particle in the fluid rest frame, we have assumed an isotropic stress-energy tensor at
every location in the upstream and in the downstream. Eq. (3.10) relies on this assumption. In
addition, we have implicitly assumed isotropy in our prediction for the amount of adiabatic heating.

To assess whether isotropy is a reasonable assumption, we show in Fig. 3.13 the electron temper-
ature anisotropy T ||/7¢,1 in the island (|| and L refer to orientations relative to the local magnetic
field); the simulations here are similar to the production runs listed in Tab. 3.1, but cover /3; more
densely in the range 8 x 1073 up to 2.

For weak guide fields (by < 0.3), the electron temperature is isotropic, Tt || /Te 1 ~ 1 (see RSN17).
For by 2 0.6 and f; < 0.5, we find substantial anisotropy, with temperature ratios in the range
T /Te 1 =~ 2-27. In these cases, isotropy is certainly not a valid assumption. As discussed above,
this will affect our inferred internal energy (since, in principle, Eq. (3.10) cannot be employed) and

the predicted degree of adiabatic heating. As regard to the internal energy, in a few cases we have

19We remark that 3 max may be much larger or much smaller than unity, depending primarily on .
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Antiparallel reconnection (b;=0)  Strong guide field reconnection (b, = 6) Turbulence

Figure 3.12: Comparison of electron irreversible heating efficiency, qye,irr (defined in Eq. (3.17)) for (A)
antiparallel reconnection (by = 0), (B) strong guide field reconnection (b = 6), and (C) the turbulent
heating prescription of Kawazura et al. (2019) (see Eq. 2 therein), in the 3i-Too/Tio parameter space. Cir-
cles in panels A and B show parameters probed directly by the simulations discussed in Sec. 3.5.4, colors
in panels A and B employ the fitting function in Eq. (3.19).

calculated all the components of the stress energy tensor in the simulation frame. By transforming
into the comoving frame, we do not need to rely on any assumption of isotropy. In general, we have
found the inferred internal energies differ from Eq. (3.10) only at the ~ 10% level.

As regard to adiabatic heating, we have discussed in Sec. 3.5.3 that compressive heating is
suppressed by strong guide fields, as well as at low values of 8;. Therefore, in the majority of cases
that show substantial temperature anisotropy, adiabatic heating constitutes a negligible fraction of
the total heating, so the degree of anisotropy has only a negligible effect on the inferred irreversible
heating. A notable exception here is the run with 3 ~ 0.1 and by = 1, for which compressive
heating accounts for about 33% of the total heating, and the measured anisotropy in the island is
non-negligible, T, | /T, | =~ 2; of all our simulations, this one has the greatest systematic uncertainty
on the compressive heating, and consequently on the inferred irreversible heating.

3.5.7 Mechanisms of electron heating in guide field reconnection
The orbit of a charged particle in electromagnetic fields may be approximated as the superposition
of two motions: fast circular motion about a point, the guiding center, and a slow drift of the

guiding center itself. This approximation is valid when the particle’s gyroperiod is short compared
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Figure 3.13: Ratio of electron parallel-to-perpendicular temperature in the island region. For reference,
the black dashed line indicates temperature isotropy, T, | /Te,1. = 1. Parallel (||) and perpendicular (L) are
in reference to the direction of the local magnetic field. The simulations shown here are similar to those
listed in Tab. 3.1, but cover 5; in the narrower range 8 x 1073-2.

to the timescale of variation of the fields, and also when the particle’s Larmor radius is small
compared to the field gradient length scale. When valid, the guiding center approximation can
provide valuable insight into the mechanisms responsible for particle energization (see e.g., Dahlin
et al. (2014); Sironi & Narayan (2015); Wang et al. (2016)). In this section, we use the guiding
center approximation to investigate the mechanisms of electron heating for g; ~ 0.01, as a function
of the guide field strength. Details of the guiding center decomposition are discussed in App. 4.B.

We track ~10* electrons starting initially in the upstream region (see Fig. 3.14, panel A), and
compute the contributions Ae E| and Aecurv, which correspond to energy changes due to the parallel
electric field and curvature drift, respectively. For clarity we focus in our discussion only on the
E-parallel and curvature drift terms, which tend to dominate for the cases we investigate here (we
have directly verified this, and it agrees with findings of Dahlin et al. (2014) for nonrelativistic
reconnection). While the simulation timestep is At =~ 0.1 w;el, the time interval we use here for
outputs of the field and electron properties for the guiding center analysis is around Aty ~
30.:;61. To ensure that this time resolution is sufficient for a guiding center reconstruction, we

compare the actual evolution of the electron energy (computed on the fly by the simulation) to
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Figure 3.14: Representative (A) initial and (B) final locations of electrons in simulations used for the
guiding center analysis outlined in Sec. 3.5.7. For the simulation shown here, b, = 0.1, 8; ~ 7.8 x 1073,
0w = 0.1, mj/me = 1836, and T,o/T}o = 1. In this case, a sample of about 1.5 x 10* particles is tracked as
they propagate from the upstream to the island region.
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Figure 3.15: Average energy gain per electron for the population of tracked particles (see Fig. 3.14), for
guide field strengths bg in the range 0.1-1, shown in panels A-D. The measured change in energy (blue) is
compared to energization due to the parallel electric field (green) and curvature drift (red) terms, as well
as their sum (dashed yellow). The initial dimensionless electron internal energy in the upstream, vep =~ 1.6,
is shown by the horizontal dashed black line.

the value calculated from the downsampled field and particle information. For the time range
over which we track particles (~3700 w;el ~ 1ta for these simulations), the energy gain computed
from downsampled field and particle information shows excellent agreement with the actual value
evolved at the time resolution of the simulation.

To study electron heating via the guiding center theory, we use four simulations for which g; =
7.8 x 1073 and b, € {0.1,0.3,0.6,1}. Here, we use a smaller box size, L, ~ 1080 ¢/wpe (the domain
size dependence of our results is discussed in App. 4.A). Apart from the domain size, the parameters
are the same as in the main guide field simulations (i.e., mj/me = 1836, oy, = 0.1, Teo/Tip = 1,
c/wpe = 4 cells, Nppe = 16). The heating fractions extracted from these simulations are roughly
the same as in the production runsof Tab. 3.1.

Electrons are tracked from t/tx ~ 0.9 to 1.9 (equivalently, twpe ~ 3330 to 7030). The tracked
particles are selected at the initial time to lie in the upstream region, within roughly £50 ¢/wpe of
y = 0 (see Fig. 3.14, panel A; grey contours show magnetic field lines). The selected electrons are
tracked for ~3700 w;el ~ 1ta, at which point they typically reside in the island region (panel B).

Fig. 3.15 shows the time evolution of electron energy gains, for guide fields b, = 0.1,0.3,0.6,
and 1 in panels A, B, C, and D, respectively (the strength of the guide field increases from left

to right). The energy gain is presented in dimensionless form with rest mass subtracted, i.e.,
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(Ee — MeC?)/Mec?® = vt

In each panel, the blue line corresponds to the electron energy gain
measured directly in the simulations. The E-parallel and curvature terms are shown in green and
red, respectively, and the yellow dashed curve is their sum. The good agreement between dashed
yellow and blue lines is an indication that our output time resolution is adequate for the guiding
center reconstruction. The black dashed line shows the specific internal energy in the far upstream
(vep &~ 1.6), which matches well the starting point of the curves.

For weak guide fields, by < 0.6, the energy gains due to E-parallel and curvature terms are
comparable, consistent with the findings of Dahlin et al. (2014). For strong guide fields, energization
due to the parallel electric field dominates; in this case, the magnetic field in the current sheet is
approximately straight (since it is dominated by the out-of-plane field), so heating due to the
curvature term is negligible. Though the mechanisms responsible for energization of electrons
differ for weak and strong guide fields, the overall energy gain is about the same in all cases,
(€ — Mec?)/mec® = v, &~ 14.5 (see also Fig. 3.8, panel A). The temporal evolution of electron
heating (both the total heating, as well as E-parallel and curvature contributions) saturates at late
times, when most of the particles reside in the primary island.

Fig. 3.16 shows the 2D spatial distribution of power associated with the E-parallel (panels
A-D) and curvature (panels E-H) energization terms. For every tracked electron at each time,
we deposit the corresponding E-parallel and curvature powers at the location where the particle
instantaneously resides (power is deposited into spatial bins of length and width equal to 2 c¢/wpe;
note that the colorbar range in Fig. 3.16 depends on this binning, so the units are arbitrary), and
then we average over the number of tracked electrons. Grey lines show the magnetic field lines
at t/ta ~ 1.9, for reference. For weak guide fields (by < 0.3), energization due to the parallel

electric field is patchy (Dahlin et al. (2014)), with heating spread over the exhaust region as well

"This is not an equality because £, — mqc? includes bulk kinetic energy, in addition to internal energy.
However, in the primary island the latter greatly dominates over the former.
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Figure 3.16: 2D spatial dependence of energy changes due to (A-D) E-parallel and (E-H) curvature
drift terms in the guiding center approximation, and (I-L) 1D profiles of E-parallel heating (green), curva-
ture drift heating (red), and their sum (dashed yellow). From left to right, the guide field increases from
0.1 to 1. The first and second rows show the per-particle average power deposited from ¢/tx = 0.9 up to
1.9 (twpe = 3330 to 7030 in these simulations; the domain size L, ~ 1080 ¢/wp. used here is a factor of
two smaller than for the runs in Tab. 3.1, a choice that is justified in App. 4.A). For reference, magnetic
field lines at ¢/ tao = 1.9 are shown in grey, but note that they are not static from ¢/ty = 0.9 to 1.9. In
the third row, 1D profiles are computed from 2D profiles by summing first along ¥, then summing cumu-
latively along x, starting from the vertical dashed black line (which represents roughly the location of the
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central X-point) and proceeding outward along +zx.
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as the island. On average, there is a net energy gain, however, parallel electric fields can also
locally cool the electrons (blue patches in panel A). Heating due to the curvature drift is localized
predominantly along the walls of the exhaust, in particular on the upper left and lower right (as in
panel B, for by = 0.3), where outflowing electrons tend to get focused (see also Fig. 3.2, panel F).

As the strength of the guide field increases, the relative importance of the curvature drift ener-
gization decreases (panels G-H), and the E-parallel heating becomes dominant (panels C-D). A
substantial amount of heating due to the parallel electric field is localized in the exhaust region,
however energization continues into the island.

While the guiding center formalism makes no distinction between adiabatic and irreversible
heating, we can infer based on our results for low 5; guide field reconnection (see Fig. 3.9, first
row) that the E-parallel and curvature drift terms in this case (having 3 ~ 0.01) contribute
predominantly to the irreversible heating of electrons. Since compressive heating is negligible at
Bi ~ 8 x 1073 (see Fig. 3.9, panel B; also, Eq. (3.16)), irreversible heating in the low f3; regime
represents the main contribution to total electron heating. It follows that, in this low S; regime,
the guiding center decomposition assesses contributions to irreversible heating.

To clarify the spatial dependence of E-parallel and curvature drift heating, we show in the last
row of Fig. 3.16 (panels I-L) the 1D cumulative sum along +x (as in Dahlin et al. (2014)), starting
from the vertical dashed line, of the E-parallel (solid green) and curvature (solid red) energization
rates displayed in the first and second rows; their sum is shown by the dashed yellow line. This
shows that heating continues throughout the exhaust region, and at the interface between the
outflow and the primary island. Little additional heating happens inside the primary island.

3.6 Summary and discussion
By means of fully-kinetic large-scale 2D PIC simulations, we have investigated guide field recon-

nection in the transrelativistic regime most relevant to black hole coronae and hot accretion flows.

122



In particular, we have focused on the fundamental question of electron and proton heating via
reconnection, differentiating between adiabatic-compressive and irreversible components. All our
simulations employ the realistic mass ratio, m;/me = 1836.

We find that the energy partition between electrons and protons can vary substantially depending
on the strength of the guide field. For a strong guide field by = By/By ~ 6 and low proton beta
Bi < 0.5, around 10% of the free magnetic energy per particle is converted to irreversible electron
heating (regardless of f3;), whereas the efficiency of irreversible proton heating is much smaller,
of order ~1% (these values refer to our fiducial magnetization o,, = 0.1 and temperature ratio
Teo/Tio = 1). It follows that the energy partition at high guide fields differs drastically from the
antiparallel limit (by = 0), in which electrons receive only ~6% of the free magnetic energy per
particle, and proton irreversible heating is around four times as much, ~24% (RSN17).

While the energy partition between electrons and protons changes drastically with the guide field
strength at low f;, at i ~ 2 (& Bimax, for o, = 0.1 and T,o/Tip = 1), the irreversible heating of
electrons and protons is in approximate equipartition, regardless of the guide field strength. That
is, as i — Bimax (When both species start relativistically hot), electrons and protons each receive
roughly the same amount of energy, ~10% of the free magnetic energy per particle in the upstream.

In addition to a comprehensive investigation of the guide field dependence of electron and proton
energy partition for our fiducial cases with o,, = 0.1 and T¢o/Tip = 1, we study several cases with
larger magnetization, o, = 1, and smaller temperature ratios, Teo/Tio = 0.1, 0.3. Motivated by our
extensive exploration of the parameter space (Tab. 3.1 and (Tab. 3.2), we provide a fitting function
(Eq. (3.19)), which captures the approximate dependence of electron irreversible heating efficiency
on fi, b, 0w, and Teo/Tig. This fitting function can be used for sub-grid models of low-luminosity
accretion flows such as Sgr A* at the Galactic Center.

As we have said, for strong guide fields and low f;, electrons receive most of the irreversible heat
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that is transferred to the particles. This is similar to recent findings of electron and proton heating
in magnetized turbulence (see Fig. 3.12, which compares with Kawazura et al. 2019), suggesting
a fundamental connection between reconnection and turbulence, as indeed supported by recent
theoretical works (Boldyrev & Loureiro, 2017; Loureiro & Boldyrev, 2017; Mallet et al., 2017;
Comisso & Sironi, 2018; Shay et al., 2018). Still, some key differences between our reconnection-
based heating prescription and turbulence-based heating prescriptions (Howes, 2010; Kawazura
et al., 2019) persist: for i ~ (i max, when both electrons and protons start relativistic, reconnection
leads to equipartition between the two species independently of the guide field strength, whereas
for the prescription of, e.g., Kawazura et al. (2019), protons receive the majority of the irreversible
heating at high ;. Also, for reconnection-based heating, the transition to equipartition happens
not at B ~ 1, but generally at i ~ (i max, which can differ from unity if o, < 1 or oy, > 1.

We have also used a guiding center analysis to study the mechanisms responsible for electron
heating as a function of the guide field strength, for a representative low-3; case with g; ~ 0.01. The
FE-parallel and curvature drift terms dominate the energy change of electrons, and their relative
importance shifts depending on the strength of the guide field; for weak to moderate guide fields,
0.1 S by < 0.6, the energy gains due to E-parallel and curvature drift are comparable, but for a
strong guide field, by 2 1, electron energization is dominated by E-parallel heating. Though the
mechanisms of electron heating differ depending on the strength of the guide field, the net increase
in electron energy remains about the same.

We conclude by remarking on some simplifying assumptions of the present work, as well as
discussing future lines of inquiry. First, in our investigation of guide field reconnection, we have
focused primarily on one value of the magnetization, o,, = 0.1, and equal temperature ratios in

the upstream, Tyo/Tlo = 1,'? to simplify the parameter space investigation. The dependence of

2The fitting function Eq. (3.19), however, also incorporates results from additional simulations with
ow =1 and Ty /T = 0.1,0.3, for both low and high guide field regimes.
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energy partition via reconnection on guide field strength for other values of the magnetization
remains under-explored, especially for the low (; regime, where we find that the proton irreversible
heating efficiency depends strongly on the guide field strength. Similarly, the effect of the upstream
temperature ratio Ty /Tjo in guide field reconnection is under-explored.

A second simplification is that we have used 2D simulations, which may differ from 3D as regard
to particle heating. In 3D reconnection, in place of magnetic islands, twisted tubes of magnetic flux
will develop; to understand the differences as regard to heating, a comparison between 2D and 3D
transrelativistic reconnection will be important, especially in the low-f; regime, where secondary
magnetic islands are copiously generated.

Finally, in our guiding center analysis, we have focused on electron heating in the low 3; regime,
where the assumption that the magnetic field varies negligibly over the electron radius of gyration
is easily satisfied. At high i, this assumption is less robust, and the guiding center theory may be
not applicable. Additional theoretical work will be necessary to provide insight into the physics of
electron and proton heating in these regimes.
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3.A Convergence of irreversible heating fractions with respect to domain size L,

The main focus of this paper is the irreversible heating of electrons and protons. In principle, the
measured values may depend on the domain size L, if, for example, the computational box is so
small that the reconnection outflows do not have the chance to reach the asymptotic Alfvén limit.
In this case, the bulk energy of the outflows would be artificially suppressed, which could in turn
suppress the particle irreversible heating. In this appendix, we present a set of lower resolution
(¢/wpe = 2 instead of ¢/wpe = 4) simulations with varying domain sizes, L, = 1080 ¢/wpe, 2160 ¢/wpe
(our fiducial choice), and 4176 ¢/wpe, to explore the box size dependence of the electron and proton
irreversible heating fractions, Myeirr and My . For these simulations, by, = 1, mi/me = 1836,
ow = 0.1, fi = 0.125, and Teo/Tio = 1. In Fig. 3.17, we show the time dependence of electron
(panel A) and proton (panel B) irreversible heating fractions for the three simulations with varying
L.

For box sizes L, 2 2160 ¢/wpe, the electron irreversible heating converges to Mye irr ~ 0.11. With
respect to electron irreversible heating, even the smaller box with L, 2 1080 ¢/wp, differs by only
~10% compared to the larger boxes. This justifies the fiducial domain size L, = 2160 ¢/wp. that
we use to study electron heating in guide field reconnection, and also the choice of L, = 1080 ¢/wpe
in Sec. 3.5.7, where we use the guiding center theory to study electron energization. The proton
irreversible heating depends more strongly on the box size, but still shows reasonable agreement
between the fiducial box size (L, = 2160 c/wpe) and larger boxes (L, = 4176 ¢/wpe). In contrast,
smaller boxes underestimate the proton heating fraction (green line).

3.B Guiding center formalism
Here, we review the details of guiding center formalism (Northrop, 1961, 1963a,b). The guiding
center method provides an approximation to particle motion along a magnetic field line, in the

1 —

limit that the inverse Larmor frequency w™ me/qB is small compared to the timescale that
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Domain size convergence test

0.15 015t g ' ' ' ]
_0.10 o10r A pEeeeEERd
§:
0.05 0.05¢ —8— L,[clw,,]=1008 |
—6— L,[clw,,]=2160
— Lx[c/wpe]=4176
0.00 pueoekasd- ) . ) 0.00 paecebasd- ) . . E
0.0 . . . . . 0.0 . . 1.5 2.0 25

tit,

Figure 3.17: Test of convergence for (A) electron and (B) proton irreversible heating fractions, with re-
spect to domain size L,. We show measured irreversible heating fractions from simulations with L, =
1080 ¢/wpe, 2160 ¢/wpe, and 4176 ¢/wpe. For these simulations, by = 1, m;/m. = 1836, o, = 0.1, §; = 0.125,
and Te()/Ti() =1.

characterizes variation in the magnetic field, or equivalently, that the magnetic field does not
vary significantly over the Larmor (gyration) radius, p = v, /w, where v, is the particle velocity
perpendicular to the magnetic field. To study the motion of a particle due to an electromagnetic

field, we start with the Lorentz force law:

i = (E(r) + E x B(r)) : (3.20)

a4
m

where r denotes the location of the particle. Eq. 3.20 is written in the nonrelativistic limit, but the
effect of relativistic inertia can be inferred from the substitution m — ym, where ~ is the particle’s
Lorentz factor. Define two vectors, R and p, corresponding to the location of the guiding center
and the location of the particle relative to the guiding center, respectively. Then r = R + p. The

guiding center coordinates are illustrated in Fig. 3.18.
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Origin

Figure 3.18: Illustration of the guiding center coordinates; in the guiding center formalism, the orbit of
a particle is decomposed into rapid circular motion about a point, the guiding center (located at R), and
motion along the magnetic field B.

A Taylor expansion in p about the guiding center R, ignoring higher order terms in the expansion
parameter € = m/q, yields

R+p
C

R+p= % (E(R) +(p-V)E(R) + x (B(R)+ (p- V)B(R))) + 6(€?) (3.21)

It is necessary to retain the final term in parentheses ~pp, because it is in fact of order e.
Define a set of orthogonal basis vectors, é; = B/B, é; which points toward the center of curvature

of the magnetic field line, and é3 = é; X é2, which is orthogonal to the previous two unit vectors.
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With these unit vectors, the particle location, velocity, and acceleration can be written as

p = p(ézsinf + éscos ) (3.22)
. . A d, .. . d, .
p = wp(éycosf — égsinfh) + %(peg) sin§ + ﬁ(peg,) cos @ (3.23)
p=—w?p(éasinf + é3cos ) + wp(é; cos — é3sinh)
+ 2w [ L(pey) cost — L (péy)sind (3.24)
w ( 5 (pe2) cosd — — (pés) s .
2 d2
+ ﬁ(pég) sinf + W(pég) cos 0

where 6 = [ wdt, where w. Note that p contains terms of order 1, because wp ~ (1/e)e = 1. The
second and third terms in Eq. 3.23 are of order € so they can be ignored upon substitution into Eq.
3.21. The terms in Eq. 3.24 are of order 1/e¢,1, 1, and e, respectively, so only the first three terms
need to be kept when substituting into Eq. 3.21.

Inserting Eqgs. 3.22, 3.23, and 3.24 into Eq. 3.21, and evaluating the time-average over the

gyration period f027r(- --)df, one obtains

R = % (E(R) + I: x B(R)) + %g) x (p-V)B(R)). (3.25)

The angle brackets here denote the time-average; evaluating the time-average for the final term

yields

(% (0~ V)B(R)) = swp?(es x (65 V)B(R) & (2~ V)B(R) (3.26)
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The coefficient on the right hand side is the adiabatic moment:

2

1 5 1¢B (mcvy 2 %c %
—W = —— = = = —
2 P 2mec \ ¢B q q

Eq. 3.25 simplifies with the following vector identities:

The last term can be rewritten as

é1-(é3-V)B=¢&, - (é3-V)(é1B)
B
=é3 VB + (&3 -V)é?

=é3-VB,
then
(é2x (é3-V)B =¢(é3-(é3-V)B) —é3(é3-VB)
and similarly

(ég X (ég . V)B = —él(ég . (ég . V)B) —‘rég(ég . VB)

(3.27)

(3.28)

(3.29)

(3.30)
(3.31)

(3.32)

(3.33)

(3.34)

The two first terms in Eqgs. 3.33 and 3.34 contain terms appearing in V - B, which is clear if the
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divergence operator is written as

V —81(61-V) + 8282 - V) + 483 - V) (3.35)
=V.-B=¢;- (él . V)B + é5 - (ég . V)B + é3 - (ég . V)B, (3.36)
but
OB 0B

(3.37)

where £ denotes the distance along the magnetic field line. Now, subtract Eq. 3.34 from Eq. 3.33

to obtain

(é2 x (é3-V)B —é3 x (é2-V)B) =€é1(é3- (é3-V)B) +é1(é2- (é2-V)B) (3.38)
_&y(6s- VB) — é4(é5- VB) (3.39)

=é1(é1-(61-V)B+éy-(é2-V)B+é3-(é3-V)B)  (3.40)

—&1(81- (61 -V)B) —é5(é2 - VB) — é3(é5 - VB) (3.41)
5 , 0B A

:el(V-B) —elW —CQ(CQ-VB) —63(63'VB) (3.42)

= -VB, (3.43)

where we have used V - B = 0. Using this simplification in Eq. 3.25, we find that

R = % (E(R) - I: X B(R)) - %VB(R) + 0(e). (3.44)

This is the equation of motion for the guiding center, with fields evaluated at the location of the

guiding center.
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Eq. (3.44) separates into perpendicular and parallel components. In particular, solving for the
perpendicular and parallel components of the guiding center velocity R provides a form that is useful
in evaluating the particle energy gain per unit time, dW/dt. To get the perpendicular component,

cross on the right with é;:

E(R) x & + (1: X B(R)) X 61] - % (VB(R) x é1) + 0(¢) (3.45)

The last term in square brackets is rewritten as
R R R
< X B(R)) xé =B (él . ) — —(é&1-B) (3.46)
c

= (él <él . I;) - P;) B, (3.47)

cE(R) x &, mcRxé ~ pcVB(R) x &

—é (6, R =R, = - = O(e? 3.48
R -é; (61 R) R, I . B p B + 0O(e) ( )
é; e me 9
= = x —cE+VB+R>+® €°). 3.49
o (B Movm 4 R ) o) (3.49)
Note that
. d .- d ) )
=—R=—(é(é&- 3.50
R-gh=g(a(eR)+Ry). (3.50)
but at zeroth order in ¢, R, = cE x é1/B, then
. é1 e me d . cE x &, 9
R, = 5 X | —cE + ?VB + 7@ (Uel + B >:| +®(€ ) (3.51)
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The last term in the square brackets is the drift velocity, ug = cE x B/B2.
The perpendicular velocity of the guiding center, as written in Eq. 3.51, is useful in analyzing
the energy gain of the particle per time. Intuitively, the energy of a particle, averaged over gyration,

is the sum of three terms:
1 5 1 .5

The first and second terms are the parallel and perpendicular energies of the guiding center motion,
respectively. The last term is the rotational energy of the particle about the guiding center. We

have

W=q[E-(Rj+Ry)dt+puB (3.53)
dW C OB
T R +R.)-E+ " ar (3.54)
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Using Eq. 3.51, we obtain

d—VtV = quE +qR.-E+ u%f (3.55)
— qu ) +4 (eBl x [cE AL m—% <v||é1 + X él)D B+ u%]f (3.56)

= qu By +q <CE; e, ’gcél XBVB ";C‘; ~ % <vé1 4B él)) E+ u%f (3.57)

— quE| +4q <’;c(é1x';9)'E ”;C‘E x % (v)é1 + ug) E) + uaajf (3.58)
B+ <Z cEg ¢ vp. chE; é jt (01 + uE)> + p,%]f (3.59)

= qu| B + pug - VB + (muE . % (v)é1 + uE)> + u%: (3.60)

= qu B + pug - VB + mug - % + mug - jt (vjé1) + u%l: (3.61)
[Q’UE +mujug - ddAt ] [qu VB + Ma@f + mug - d;tE] (3.62)

TV
parallel perpendicular

For example, the energy change of an electron, time-averaged over the gyration period, and to
first order in the expansion parameter me/e, is (restoring the effect of relativistic inertia via the

substitution me — yme)

1dee YMe db
;E = _UHE” + UHUE dt]
parallel (3 ) 63)
1 1 B e d e\ 2
| g vy 1108 e dun +o(2)
ve ve Ot e dt e

perpendicular

where e, = ymec?, —e is the electron charge, u = fyzvime /2B is the adiabatic moment of the
electron, b = & = B/B is the direction of the local B-field, and ug = ¢E x B/B? is the drift

velocity; electric and magnetic fields are to be evaluated at the location of the guiding center. The

underbrackets indicate terms that are associated with parallel and perpendicular energy changes.
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Several of the terms have direct physical significance, and provide insight into the mechanisms

responsible for particle energization; the first of the terms labeled ‘parallel’ in Eq. (3.63), for

example, corresponds to acceleration by the electric field, parallel to the local B-field. The physical

significance of several of the other terms is discussed below.

The terms in Eq. 3.63 can be further analyzed using the relation between Lagrangian and

Eulerian derivatives:

d 0 ~
£_§+(U\\b+uE)'v

Take the second term on the first line of Eq. (3.63):

~

. db o ) -
am UHLIE = %UHHE . ( + (UHb + uE) . V) b

e dt ot
YMe b yme - YMe . .
= V|UE * &, + ——V|ug - (uE . V)b + V|UE - (b . V)b
e ot e e

The last term here is the well-known ‘curvature drift’,

MvﬁuE (b-V)b= 1Me cvﬁE :
e e

=-E vy

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

which describes the Fermi-like acceleration of particles due to the magnetic tension of curved field

lines (Drake et al., 2006, 2010). Here, we have defined the curvature drift velocity, veyry. This can

be interpreted as the velocity, in the direction orthogonal to the plane of curvature, that is required
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to provide centripetal force on a particle following a curved magnetic field line:

’Ymevﬁ
Fcurv = R2 Rcurv (369)
curv
2
cFeuv X B 'ymech Rewy x B
i v = —— = — 5 .
Veur e B2 oR2 B2 (3 70)

curv

which can be expressed in terms of the derivative of the unit vector b along the magnetic field
line. To see this, consider an infinitesimal change in the unit vector db as a particle subtends angle
« along a curved field whose radius of curvature is Rcy. Then db = —aRcury/Reury, and the

distance traveled along the arc is df = Reyrv, but by definition

ZE = (b- V)b, (3.71)
therefore
(b-V)b = —22:: (3.72)
Substitute this into Eq. 3.70 to obtain
’ymecvﬁ b x [(f) . V)f)]
Veury = = B ; (3.73)

as in the definition (Eqgs. 3.67, 3.68).

On the second line of Eq. (3.63), the first term expresses energy change due to the ‘V B-drift’,

1 1 b x VB
“lug. vB=-HFeg. 22 V2 (3.74)
v e v e B

=_E vyg. (3.75)
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which defines the V B-drift velocity.

To elucidate the physical origin of the V B-drift, consider the orbit of an electron in an inhomoge-
neous magnetic field B = B(R l)f) Assume that the magnetic field varies only in the é; direction,
and that the particle has no initial velocity along the direction b. The force on the electron, in the

é3 direction, is (neglecting relativistic inertia)
meﬁg = 6,[)33 (3.76)

Taylor expanding B about the guiding center, and inserting the Eqs. of motion for the particle

(3.23, 3.24),
Mefo = Cul cosd [B + pcosf(02B))]. (3.77)
c

We employ a time-average over the gyroperiod to compute the average force:

(Mefin) = e";ﬁ” 0y B = —”;e;i 9, B. (3.78)
In general, this force may be written as
(mep) = —puVB. (3.79)
Then, the V B-drift velocity is
VvB = —%w, (3.80)

e B

which is the definition as provided in Eqs. 3.74 and 3.75 (for an electron with relativistic mass
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VMe).

The second term on the second line of Eq. (3.63) corresponds to the induction effect of a time-
varying field due to V x E acting about the circle of gyration (Northrop, 1963b). Finally, the last
term on the second line of Eq. (3.63), when expanded, contains another term with a well-known

physical interpretation. To extract this term, expand the Lagrangian derivative:

VM dug  Yme 0 N
. ug - 7 = - ug - ((% + (U”b + uE) . V) Uug (381)
($] 6 e e ~
= ’W: ug - ;tE + ’YZL ug - (uE . V)uE + %UHUE . (b . V)uE (3.82)

This first term corresponds to ‘polarization drift’, which is driven by time-variation in the electric

field:
N 811}3
YMe Oug  Yme b x E
. — E. )
. ug 5 . c 5 (3.83)
=-E- vy (3.84)

To clarify the physical significance of polarization drift, consider an electron in perpendicular E

and B fields. The electron has drift velocity

cExB
If the electric field is time varying, then (neglecting relativistic inertia)
. cE x B
meig = CP (3.86)

which is a force on the electron, perpendicular to both the E and B fields. It is not supplied by
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E because E L ug; instead, the electron develops a velocity vy in the same direction as E to

balance the magnetic force on the electron,

Metly, = —gvpol x B (3.87)
1 ~ N .
= ;ﬁE xb= —(b X (Vpol X b)) = —Vpol (388)
1 ~ 8uE
= Ve = — | bx —=]. 3.89
Vool = < . ot > ( )

Upon substitution me — vym, to account for relativistic inertia, this is the definition of polarization
drift velocity as provided in Eqgs. 3.83 and 3.84.

In practice, many terms in the expansion of Eq. (3.63) can be ignored, as their contribution
to the electron energy gain is negligible. In Sec. 3.5.7, we employ the guiding center analysis, as
detailed in Dahlin et al. (2014), to assess the mechanisms responsible for energy gain in guide field
reconnection. Formally, the electromagnetic fields are to be evaluated at the location of the guiding
center, however if the electron Larmor radius is sufficiently small, relative to the gradient length
scale of the magnetic field, then the measured value at the guiding center is similar to that at
the particle location. For the simulations described in Sec. 3.5.7, we find that this is a reasonable

assumption.

139



4. Kelvin-Helmholtz 1

4.1 Introduction

The Kelvin-Helmholtz (KH) instability is driven by the transfer of momentum across the interface
of two fluids in relative motion. This instability was discovered first by Von Helmholtz & Monats
(1868), who studied mixing between fluid layers of differing density. Lord Kelvin (1871) studied
formally the passage of wind over water as a shearing flow. Chandrasekhar (1961) and Dyson
(1960), among many others, have studied the KH instability at the interface of air currents in
Earth’s atmosphere.

The KH instability, with an especially rich history in geophysical literature, is a generic phe-
nomenon. It has been shown to have a rich interplay with magnetic reconnection, for example;
Faganello et al. (2008, 2012) used numerical simulations of the KH instability to show that re-
connection may be induced as a byproduct of unstable KH growth at the interface of Earth’s
magnetosphere and the solar wind. It is interesting to ask whether a similar mechanism may op-
erate in other astrophysical contexts, for example at the interface of a black hole’s jet and the
surrounding wind/corona (Hamlin & Newman, 2013).

In this chapter, we focus on a KH problem motivated by the interaction of astrophysical jets
with the surrounding disk wind. In the typical case of an accreting black hole, the jet is highly
magnetized, relativistic, and of low density, while the wind has lower magnetization, moves more
slowly, and has higher density (e.g., Yuan & Narayan (2014)). Numerical general-relativistic magne-
tohydrodynamic simulations show some evidence for KH instability at the interface (Hardee, 2004;
Mizuno et al., 2006; Hardee et al., 2007). The outline is as follows: In Sec. 4.2, we describe two
KH problems, and for each carry out a linear analysis of the KH instability. Next, in Sec. 4.3, we

describe relativistic magnetohydrodynamic simulations that we use to test the linear analysis. We
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conclude in Sec. 4.4.
4.2 Problem descriptions and linear analysis
Here, we study the evolution of waves at the interface of two relativistic magnetized fluids in relative
motion (Bodo et al., 2004; Osmanov et al., 2008). The growth of such waves is governed by the
equations of relativistic magnetohydrodynamics (RMHD), and so a standard linear analysis of the
shear flow problem, within the framework of RMHD, leads to a description of the waves allowed at
the interface separating the two (relativistic and magnetized) fluids (Anile, 1990; Bodo et al., 2004).
In the following sections, we describe two shear flow problem setups in detail, then investigate the
linear instability of RMHD waves for each setup.

For conciseness of notation in Sec. 4.2.1, we adopt naturalized Gaussian units, with ¢ = 47 =
kg =1.
4.2.1 Shearing flow problem descriptions
We consider two related problems of magnetized shear flow: first, the classical case in which two
identical fluids move with equal and opposite velocities (henceforth referred to as the ‘symmetric’
setup), and second, a case motivated by astrophysical jets, wherein weakly magnetized plasma
rushes past magnetized plasma (which we refer to as the ‘jet’ setup, because of the physical similarity
to what one may observe sitting in the rest frame of a jet). In the following sections, Secs. 4.2.1.1
and 4.2.1.2, we elaborate on the symmetric and jet setups.
4.2.1.1 Symmetric shear flow: problem description

For the problem of symmetric shearing flow, we consider a (dimensionless) velocity profile with an

infinitely thin transition width between the two sides of the flow:

(+Bsh7070) lfy > 07
v(y) = (4.1)

(_/Bshaoyo) if y <O.
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The parameter (g, here parametrizes the velocity of either side of the flow, as viewed in the
laboratory frame; notice that the total velocity jump between the sides with y < 0 and y > 0
(which we refer to as y_ and y., respectively) is, in the laboratory frame, 283y,.! Following the
notation of Osmanov et al. (2008), we use subscripts _ and 4 refer to quantities on sides y_ and y..

A magnetic field oriented along 4+, i.e., parallel to the direction of motion, permeates the plasma:

B(y) = (B0, 0,0). (4.2)

For symmetry, the two sides of the flow are assumed to have equal proper mass densities py_ = po ,
and to be in pressure balance along y, i.e. the yy component of the stress-energy tensor T4 (y) is
constant along y.

In its generality, the symmetric shear flow problem described here is the subject of a vast and deep
literature, with seminal work originating as early as the late nineteenth century (Von Helmholtz &
Monats, 1868; Lord Kelvin, 1871). Our focus then in investigating the symmetric setup is to make
connection with previous studies, notably those regarding analysis of the KH instability in RMHD
(Ferrari et al., 1980; Bodo et al., 2004; Osmanov et al., 2008; Hamlin & Newman, 2013; Mignone
et al., 2018).
4.2.1.2 Astrophysical jet: problem description
As a companion setup to the symmetric case described above, we consider a second problem mo-
tivated by astrophysical jets, with y_ of the shear flow magnetized (the ‘jet’), and y (possibly)
weakly magnetized (the ‘wind’). To describe the field profiles, we imagine sitting in the rest frame

of the magnetized jet; then the jet plasma is at rest, and the relative motion of the wind is along

!The difference in velocity between jet and wind sides, as viewed in either the jet or wind frame, is in
general not equal to 25, due to standard relativistic formulae for velocity addition.
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(Bsh,0,0) if y > 0,

(0,0,0) ify<0.

Note that in our description here of the jet problem, B¢, parametrizes the full difference in velocity
between sides y_ and y4; this differs from the definition of fg, in the symmetric setup (where fSgy
is half the difference in velocity between y_ and y. ). However, the meaning of S, in the remainder
of this chapter will either be unambiguous based on the context, or will be stated explicitly.

The profile of the magnetic field is

(0,0,b4By)  ify >0,
B(y) = (4.4)

(B[),O,bjBo) if y < 0,

where we allow for guide components of magnetic field on the jet and wind sides via the parameters
by and bj, respectively. The (fluid frame rest-mass) density ratio of jet to wind is inferred from
general relativistic MHD simulations to lie roughly in the range 102-10° (see e.g., Tchekhovskoy
et al. (2011); Duran et al. (2017)), but it is not known with precision. We consider a density profile

of the form:

Pow if Yy > 07
p(y) = (4.5)

P0j if y <O.

In both the symmetric and jet problems described above, we make the simplifying assumption
that the profiles of velocity and magnetic field (as well as mass density, for pow # poj) have an

infinitely thin transition width. A more physical assumption (also, more challenging analytically), is
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that the field profiles vary smoothly over some finite length; the growth rate of the KH instability in
MHD, for fluids separated by a hyperbolic tangent profile, was worked out by Chandrasekhar (1961).
Introduction of a smoothly varying velocity profile has the effect of suppressing KH modes with
wavelengths less than the transition width (neglecting factors of order unity (Berlok & Pfrommer,
2011)). The growth rates of the KH instability that we discuss in the following sections, assuming
discontinuous profiles, should then be understood as upper limits to growth rates that can be
obtained in simulations, where spatial resolution of the transition is itself limited.

4.2.2 Relativistic MHD equations

The equations of relativistic MHD follow from conservation of energy-momentum and mass; in
covariant form, the governing equations of RMHD may be written compactly as (Dixon, 1978;

Anile, 1990)

9Tt =0, (4.6)

a#(pu“) = Oa (47)

where T}.! is the stress-energy tensor (consisting of fluid and electromagnetic components, T/, =

TH" + Thy), u* = (v,7v) is the fluid four-velocity, and

Ty = wuu” + pg"”, (4.8)
1
TH = FrepY Zgﬂ”}«gﬁmﬁ. (4.9)

Here, w = ph is the fluid enthalpy density (in the rest frame of the fluid); p is mass density;
h =1+ 0T,/(Taq — 1) is specific enthalpy, assuming a perfect fluid; 6 is the fluid dimensionless
temperature; I',q is the adiabatic index of the fluid; p is the fluid pressure (assumed isotropic);

g = diag(—1,1,1,1) is the metric; and F*” is the electromagnetic tensor, obeying the Gauss-

144



Faraday law 9|, F),,) = 0 and Gauss-Ampere law 9, F*” = —J”. The equations of RMHD (Eqs. 4.8

and 4.9) may be written in three-dimensional form as (Mignone et al., 2018)

d(p)

ot +V .- (pyv) =0, (Continuity Eqn.) (4.10)
aat(w'y2v) + V- (wy*vv) +Vp—-JI xB =0, (Momentum Eqn.) (4.11)
OE .
i VxB+J=0, (Ampere’s law) (4.12)
0B
e +VxE=0, (Faraday’s law) (4.13)
9 2 2
gn (wy* =p) + V- (wy’v) = J-E =0, (Energy Eqn.) (4.14)

where E and B are the electric and magnetic fields, and J is the current. Constraints on the
divergence of the electric and magnetic fields come from the temporal components of the Gauss-

Ampere and Gauss-Faraday laws,

V E=p, (4.15)

V.-B=0, (4.16)

where p, is the charge density.

4.2.3 Linear analysis of instability

To proceed with linearization of Eqs. 4.10—4.14, wherein small perturbations about the background
fields are introduced, we choose to work in the the rest frame of the fluid, where the background

electric field vanishes. Eqs. 4.10-4.14 are then linearized by introducing small perturbations to the
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background fields,

p=po+p1+0(), (4.17)
p=po+p1+0(e?), (4.18)
v =0+v] +0(e), (4.19)
B =By + B; +06(¢%), (4.20)
E=0+E; +06(e?), (4.21)

k-x—wt
), where

and by assuming that the perturbed variables take the form of plane waves: X; o ee’(
X is any of the perturbed variables p1, p1, vi, or By; € is a small amplitude, w is the frequency, and
k = (k,l,m) is the wavevector (both the frequency and wavevector are complex). The wavevector
component k is the part of k parallel to the shear velocity, [ is the component of k perpendicular
to the jet-wind interface, and m is the component of k lying on the interface and perpendicular to

the shearing plane. The angle of propagation of the wave, relative to the shearing plane and lying

in the interface, is controlled by

~
Il

SE

(4.22)

We consider this as a free parameter during our exploration of the KH instability in jets, in Secs.
4.2.3.3 and 4.2.4.

The perturbation to the electric field E; is eliminated from the linearized equations in the ideal
limit (i.e. infinite conductivity), which requires the current to vanish at all orders in €, from which

we deduce E1 = —v; x By.

146



Linearization of Eqgs. 4.10-4.14 yields

—iwpr +ipok - v =0, (4.23)

—iwwovi + ikp; — ((ik x B; —iwvy x Bg) x Bg) =0, (4.24)
—iwB; — (ik x (v1 x By)) =0, (4.25)

—iw <<ZZS - 1) p1+ gii}spl) + woik - v = 0; (4.26)

note that Ampere’s law (Eq. 4.12) is eliminated from Eqs. 4.10-4.14 by solving for J and substitut-
ing into the remaining equations prior to linearization, which leads to the equations Eqs. 4.23-4.26.
Introducing the state vector ¥ = (p1,p1,B1,v1), Egs. 4.10-4.14 may be cast as a matrix equation

X% = 0, which has nontrivial solutions if
det(X) = 0. (4.27)

One must also enforce the divergence-free constraint, k - B; = 0.

In the following sections, we apply the technique outlined above to determine the growth rates
of RMHD waves for the ‘symmetric’ and ‘jet’ geometries described in Sec. 4.2.1. In this analysis,
the notation becomes more concise by introducing the Alfvén speed va and sound speed c¢g, which

we define as (Komissarov, 1999; Osmanov et al., 2008; Mignone et al., 2018)

/ B(Q)
= 4.28
va wo + B%’ ( )

p)
wo — F2po 1

Owg _ w.
3po 1 0

C = (4.29)

The equation det(X) = 0 yields a dispersion relation governing relativistic MHD waves, as viewed
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in the frame comoving with the fluid. Defining the magnetization o, = BZ/wp, and recalling that
(for a perfect fluid) wo = poho = po(1 + Gplaq/(Tag — 1)), the Alfvén speed and sound speed may

be written as

Ow
_ 4.30
VA 1 n O_w7 ( )
T
Co = ,/ﬂ. (4.31)
ho

4.2.3.1 Symmetric shear flow: relativistic MHD dispersion relation
For the symmetric shear flow setup described in Sec. 4.2.1.1, a longitudinal magnetic field By =
(B0,0,0) permeates the plasma (the dispersion relation for this problem has been derived by
Osmanov et al. (2008), whose derivation we follow in this section). In this case, Eq. 4.27 (enforcing
also V-By = 0, i.e. k-B; = 0, and employing the definitions Eqs. 4.28-4.31) reduces to (Komissarov,
1999; Osmanov et al., 2008)

G - (@% — KioRs) - @1 - BB + (1 - 0]e) (B + D)

(4.32)

i

T+mi)+ %iv/iicgi(%i +13

+oi (k2 + 2 +md)) =0,

where the overtildes indicate rest-frame quantities (the overtilde is omitted for the Alfvén speed
vaA = Bgo/ \/m , which is in this case invariant under boosts in the x direction, and so is
the same whether viewed from y_ or yy; the overtilde is omitted also for the sound speed, which
is only well-defined in the fluid rest frame); as in Sec. Sec. 4.2.1.1, subscripts _ and 4 refer to the
y < 0 and y > 0 sides of the shear.

The first root of the dispersion relation Eq. 4.32, wy = 0, is important in smoothly varying

shear layers, as opposed to the discontinuous profile we consider presently, and is discussed in
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detail by Blumen et al. (1975);2 see also Bodo et al. (2004). The second factor in Eq. 4.32 gives
W = :l:%ivAi and corresponds to the propagation of Alfvén waves. This again is not of interest to
us. The final factor in Eq. 4.32 describes the propagation of magnetosonic modes; in anticipation
that the phase velocities w4 corresponding to these magnetosonic modes may have imaginary parts,
we select the third factor from Eq. 4.32 to study instability at the interface of the shear layer.

To express the growth rate of the instability as viewed in the laboratory frame, we derive two
equations for (15 /I_)2, which allows us to eliminate (I, /I_)? and arrive at the laboratory frame
dispersion relation, which depends only on the sound speed, Alfvén speed, shear flow Sy, wavevec-
tors k, m, and phase velocity w. To boost Eqs. 4.32 to the laboratory frame, we use the Lorentz

transformations

~ w F kB T k F wBsn 7

Wy = ) ki , Iy =14, My = m, (4.33)
V1- 54 V-84

2Blumen et al. (1975) showed that for a smoothly varying (as opposed to discontinuous) shear layer of
compressible fluid, the neutrally stable mode corresponding to w+ = 0 in Eq. 4.32 is indeed unstable to
perturbations; the stability properties of long-wavelength perturbations at smoothly-varying interfaces differ
significantly from the properties of long-wavelength perturbations at discontinuous shear interfaces.
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and solve for (11 /I_)?, which yields

(14/1-)% = (1 = BRI (1 = 0])(w + kBan)® — oA (k + wBan)® + v} (w + kBan)?)
(Z (R (k = whan)*((k — wBn)® + (1 = 3)m?) — (w — kBen)*((k — wha)”
+ (1= B3)m* (1= vX))) + (w = k)" — vX (@ — kBa)*((k — wBan)® + (1 - B3)m?))
/(1= B3 WA (@ = kBan)? = (R (vX — BE(1 = 0])) + 28k (1 — 20} )w
— (1= (14 B3 )R (WA (k + wBa)*((k + whan)® — (B3, — hm?)
= (o + ko) *(k + wBn)® + (1 = BR)m* (1 = v3))) + (w + kBan)*

— vA(w + kBsn)*((k + wfn)® + (1 — B3)m?))).

(4.34)

We derive a second equation for (I /I_)? by considering the y and 2z components of the linearized

RMHD momentum equations, Eqs. 4.24, along with the induction equations Eqs. 4.25:

ki BooBy1, — lsBroBats — lapis + 0y, &+ (B2 + porhos) =0, (4.35)
M ByoByi+ — 03120+ (B2 + porhos) — k+BeoBar+ + mpiy = 0, (4.36)
l+0y1, Byo + m031+ Byo — G4 Boig = 0, (4.37)

k+0y1, Byo + @i By1, =0, (4.38)

kst 4Bao + @+Bay = 0. (4.39)

By eliminating m,Ey/l > Bais,vz14, and vz14 from Egs. 4.35-4.39, applying the Lorentz trans-

formations Eqgs. 4.33, and employing pressure balance (p— = p,), along with the displacement
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matching condition at the interface of the shear flow (y = 0), namely

Uyl _ Uyly
_ 7 4.40
w + kfBsn w — kB ( )
we obtain a second equation for I /l_,
L Vi (w? = k?) (1= B2) + (w— kBen)?(1 — v3) (4.41)
L v (@? = k) (1= B5) + (w+ KBa)*(1 - 0}) '

Together, Eqgs. 4.34 and 4.41 yield the desired dispersion relation governing RMHD modes coupled
at the interface of the shear flow for the symmetric shear problem. In squaring Eq. 4.41 to seek
numerically the complex roots of the dispersion relation, four spurious solutions are introduced;
trial solutions must be rejected if they do not satisfy Eq. 4.41, so that only the physical solutions
are retained. In computing solutions to the dispersion relation, we also enforce the condition
Im(l4+) > 0 and Im({_) < 0, which ensures that the wave amplitude approaches zero as y — $o0.
When discussing solutions to the dispersion relation, it will be convenient to recast the phase

velocities as dimensionless numbers (Osmanov et al., 2008),

w w

S 4.42
vaVk? +m?2 ¢ (442)

Poa = R

If the quantity ¢,, (or ¢, which is especially convenient if discussing unmagnetized shearing
flow) has a positive imaginary part, we have an unstable mode, whereas a negative imaginary part
indicates a stable mode.

In the remainder of this section, and also in Sec. 4.3.3, we make frequent reference to the ‘growth
rate’ Im(¢,, ), which is a condensed notation we use to indicate the following: from the set of

four physically viable ¢,, that, for a given choice of physical parameters, satisfy 1) the dispersion
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relation, and 2) the ‘decaying’ boundary condition as y — +o0, select the maximum of the four
imaginary parts; thus the notation Im(¢,, ) > 0 indicates instability, and Im(¢,, ) < 0 corresponds
to stability.

The dispersion relation Eqgs. 4.34 and 4.41 is written in terms of physical parameters v and cs,

but other parameterizations are possible. Yet another choice of parameters is

s 1- 2
ay =P V=G (4.43)
Cs /1 — 2h

(=2, (4.44)

which are the relativistic Mach number and Alfvénic Mach number, respectively (Chiu, 1973; Konigl,
1980; Bodo et al., 2004; Osmanov et al., 2008). An alternate parametrization, familiar from studies
of magnetized plasmas (reconnection, turbulence, and shocks, for example) is in terms of ion plasma-

beta and magnetization (defined with the in-plane component of magnetic field),

2poi
Bip = =2 (4.45)
© B
BQ
Oz = 22, (4.46)
wo

where poi = poifoi is the thermal pressure of ions (po; and fy; are the mass density and dimensionless
temperature of ions, respectively; we consider a two fluid picture, with pg; = poe), and the magnetic
field and enthalpy are as defined in Secs. 4.2.2 and 4.2.3. To write Eqs. 4.34 and 4.41 in terms of
B; and oy, one also requires an equation of state relating dimensionless temperature and adiabatic
index; to this end, we use a precise fitting formula to the Synge (1957) equation of state (Service,
1986); see Eq. 4.90 in Sec. 4.A. Our main results in Secs. 4.2.3.3 and 4.3.3 are phrased in terms of

ion plasma-beta and magnetization.
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Figure 4.1: Relativistic Mach number dependence of the growth rate in relativistic MHD for symmetric
shear flow, for different values of the Alfvénic Mach number, { = wva/cs. A vertical black dashed line at
M, = /2 indicates the classical stability bound.

To connect with results in the literature, we show in Fig. 4.1 the dependence of the growth
rate Im(¢.,) on relativistic Mach number for shear-aligned modes (m = 0), computed via the
dispersion relation (Egs. 4.34 and 4.41; our Fig. 4.1 can be compared with Fig. 1 in Ferrari
et al. (1980), and Fig. 4 in Bodo et al. (2004)). The yellow curve in Fig. 4.1 corresponds to
the nonrelativistic hydrodynamic limit, in which the system is stable to perturbations for Mach
numbers above v/2 (Ferrari et al., 1980; Bodo et al., 2004; Hamlin & Newman, 2013); see Sec. 4.2.3.2
for further discussion. This classical bound is indicated in Fig. 4.1 by a vertical black dashed line.
Taken together, the sequence of colored lines demonstrates some of the basic physics of the KH
instability in the presence of a shear-aligned magnetic field; as the Alfvénic Mach number increases
(equivalently, as the magnitude of the in-plane magnetic field increases at fixed temperature), the
range of Jl, over which the system is unstable decreases, and also the maximum growth rate within
the range of unstable (. decreases. Heuristically, the effect of the magnetic field is similar to the
stabilizing effect of a surface tension; as the strength of the magnetic field increases, the energy
required by the wave to propagate along the direction of the magnetic field, and in doing so, bend

the field lines, increases (Chandrasekhar, 1961; Hamlin & Newman, 2013).
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4.2.3.2 Symmetric shear flow: nonrelativistic HD dispersion relation

In the limit of vanishing magnetic fields, and nonrelativistic Bs, and c¢g, roots of the dispersion
relation Eqs. 4.34 and 4.41 simplify considerably (as a further simplification, we consider only
modes which propagate along the direction of the shearing flow, i.e. modes with m = 0). With

va = 0 and m = 0, Eq. 4.34 reduces to

L) (w— kBan)? — 2k — wha)?
(L) (Wt kBan)? — (k4 wBn)? (447

Similarly, Eq. 4.34 simplifies:

ly (w— kﬁsh)Q
I (wtkBa)? (449

Eqs. 4.47 and 4.48 may be solved for w, which yields (using Eq. 4.42) an analytic expression for
the dimensionless phase velocity. For nonrelativistic S, and cs, the (physically viable) solutions

are

Pe, =0, (4.49)

2 2
Pey = 4|1+ (55h> + 1+4<55h> : (4.50)

Cg Cs

As discussed in Sec. 4.2.3.1, the first solution Eq. 4.49 in fact corresponds to an unstable mode
when one considers a smoothly varying shear profile. From the second set of solutions Eqgs. 4.50,
only the one with a minus sign can have a positive imaginary part, and it corresponds to an unstable

mode; in particular, this root is purely imaginary when

Ban _ V2, (4.51)

Cs
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which demonstrates the classical result that the symmetric shear flow is unstable for M. < v/2,
where M. = Pqn/cs is the classical Mach number (Chandrasekhar, 1961). This bound is plotted
in Fig. 4.1 as a vertical black dashed line, and explains why the yellow curve (corresponding to
Alfvénic Mach number ¢ = 0 and g, = 1073) indicates stability beyond Jl. ~ Jl, = \/2; Bodo
et al. (2004) have shown that the classical limit persists even for relativistic shearing flows, when
one considers the appropriate Mach number, i.e. the system is unstable for J(, < v/2.

4.2.3.3 Astrophysical jet: relativistic MHD dispersion relation

Here, we derive the dispersion relation for the jet problem described in Sec. 4.2.1.1. The method
of solution is similar to that presented in Sec. 4.2.3.1 for the symmetric shear problem, so here
we focus on key results, and on any steps in the solution which differ from what is presented in
Sec. 4.2.1.1.

For the jet setup, we consider a magnetic field which differs between the two sides of the shear,
y+ and y_ (the ‘wind’ and ‘jet’, respectively). On the wind side, the magnetic field is Bg; =
(0,0,bwBy), and on the jet side the magnetic field is Bo— = (B, 0, b;By), which are both of the
form Boy = (Bgo+,0, B.o+). Substitution of Bopy into Eq. 4.27, along with the divergence-free

constraint, yields a dispersion relation governing RMHD waves in the fluid rest frame:3

- - ~2 __o ~ o [ Bzox + Booyx 72 o 2 VAL (52,32 |
Gg - (@3 — kyvA%) - (wi — @ <x|/]§_/|gz|k|:|:UA:|: + s (|k|jE - ﬁ (Bin(ki +13)
01+ 0l+

e N ~o—2 , _
— 2Buo+ Baorkima + Booy (12 + mi)))) + k||i|k|iC§iUAi> =0.
(4.52)

Similar to Eq. 4.32, the first factor in Eq. 4.52 corresponds to a marginally stable mode (wy = 0),

the second factor corresponds to Alfvén waves (w4 = j:I;:V” L VA+), and the the third factor gives the

3Even for quantities (apart from c¢;) which transform trivially under a boost along x, such as l;, m4, and

B0, we do not suppress overtildes, to clarify that this equation applies generally in the fluid rest frame.
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magnetosonic modes. Selecting the third factor in Eq. 4.52, we may solve for 7:2&(: 13), then use
appropriate Lorentz transforms to express each of li and [? in terms of jet-frame quantities (note
that, as described in Sec. 4.2.1.1, we choose the jet frame as the lab frame, so the equation for 12
transforms trivially). To express the (wind-side) Z?L in terms of jet frame quantities, we employ

standard Lorentz transformations,

_ w—k - k- 7 5
Wy = w755h7 k, = ﬂ, =1, my =1m, B.oy = B20+\/q‘

- + - Iy
\/]‘_ sh \/1_ sh

(4.53)

The result, which we express in terms of our canonical choice of variables ¢y, Biz, Cwz, Bshs bj; bw,
pojs Pow, k, and the ratio of wavevectors f = m/k, is a rather lengthy equation; it is presented in
full in Sec. 4.A (along with other calculational details). For the present discussion, we represent
the solution as a placeholder function Fy which simply indicates the quantities upon which (1, /I_)?

depends:*

(l+/l—)2 = F1(¢UA7 ka Bim; Owzx, p0j7p0W7BSha bJ: bWa f) (454)

We obtain a second equation for (I, /I_)? from the linearized relativistic MHD momentum and

induction equations (Eqgs. 4.23-4.26), along with total pressure balance (to first order); on the jet

4In Sec. 4.A, we have derived the explicit form of Eq. 4.54 assuming an arbitrary mass ratio m;/m. in
the plasma, but for the present discussion, we assume the two species to have equal masses, m;/m, = 1.
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side, these read

kbjBQle — mbjBQBx]_ + kp1 — lew(bjBo)2 + vzlwbng — pohovgiw = 0, (455)

kBoBy1 — 1BoBy1 — IbjBoB1 + mbiBoBy1 — Ip1 + vy1wB]

(4.56)

+oy1w(b;Bo)? + pohovyiw = 0,
kByB,1 — mByB,1 — mp1 — vzlwbng + vzleg + pohoviw =0, (4.57)
muz1b;Bo — lvy1 Bg — mv.1 By + wBy = 0, (4.58)
kvy1 By + muy1b;By +wBy1 = 0, (4.59)
kvz1b; By + lvy1b; By — kv,1 By — wBay = 0, (4.60)
Drot1 — (P1 + Bz1Bo + Bz1bBg) = 0, (4.61)

and on the wind side (in the frame comoving with the wind),

Fi Baos By —mBaoy Baty + ki Pis — 01434 Baos. — fohostm s @4 = 0, (4.62)
U Boi Bors = mBags Byt + Lifis — U1, @4 Bao — o hos Uy, B = 0, (4.63)
mp14 — poyhor vy =0, (4.64)
—MUp14 Baoy — @4 Bery = 0, (4.65)
—mUy14Bzoy — @1 By1, =0, (4.66)
k414 Baoy + LiUy1+Baoy — @3 Ba1y =0, (4.67)
Prot14 — (P14 + Bz14B204) = 0. (4.68)

By solving Eqgs. 4.55-4.61 and 4.62-4.68 for [ and [, respectively, and using the Lorentz transfor-
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mations 4.53, along with the displacement matching condition at the interface,

Uyl o 61\//1-‘,—
e (4.69)
17&3}1

the ratio of wavevectors [y /I is obtained. The result may be expressed as a function of ¢, , k, Biz,
Twa»> PO} Pows Bshs by, by, and f (= m/k, which controls the angle of propagation of the wave in the

xz plane). The result, which we indicate by the function Fj,

l+/l - F2(¢UA7 k75ixa Owx pOj)pUWHBSh) bja bW7 f)7 (470)

is stated explicitly in Sec. 4.A (see Eq. 4.85). Together, Eqs. 4.54 and 4.70 provide the desired
dispersion relation. To study the growth rate of unstable modes in the jet problem, we compute

(numerically) solutions to the equation

Fl (¢vA7 k’, Biwa Owzxy POjs POw Bsha bJa bW7 f) = F2(¢’UA7 ka Biaﬁ Owzxy POjs POw 55117 bj7 bWa f)2 (471)

The dependence on k cancels between the two sides of Eq. 4.71, so solutions ¢,, are finally

computed as roots of an equation of the form

F3(¢’UA7Bi$7 Owzxy POjr POw BS}U b_]7 va f) = 0. (472)

As described in Sec. 4.2.3.1, squaring F5 (which is equal to I4/l) in Eqn. 4.71 introduces four
nonphysical roots which do not satisfy Eq. 4.70, so we reject these solutions. We also reject
solutions that do not satisfy the boundary condition Im(/4) > 0 and Im(l) < 0; this is a statement

that the wave amplitude must approach zero as y — +oo.
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Parameter Eqn. Description

Bix Eq. 4.45 pyi/(B2,/2), the ion plasma-beta defined with respect to in-plane
magnetic field; ratio of ion thermal pressure to in-plane magnetic
pressure on jet side

Owa Eq. 4.46 Bﬁo /wq, magnetization defined with respect to in-plane magnetic
field; controls ratio of (2x)in-plane magnetic pressure to plasma
enthalpy density in the jet

Bsn Eq. 4.3 Speed of wind relative to the jet

b Eq. 44 B.;/Bqo,, strength of guide field in the jet (as measured in the
jet/lab frame), in units of in-plane magnetic field B,g; (in the jet)

by Eq. 44  B.ow/Bazoj, strength of guide field in the wind (as measured in the
jet/lab frame), in units of in-plane magnetic field B,o; (in the jet)

P0j Eq. 4.5  Mass density of the jet (in the fluid rest frame)

Pow Eq. 4.5  Mass density of the wind (in the fluid rest frame)

f Eq. 4.22 m/k, the ratio of wave vectors in the plane of the shear interface

(that is, the 2z plane); controls propagation angle of perturbation

Table 4.1: Listing of parameters used to specify the initial state for the astrophysical jet problem.

4.2.4 Astrophysical jet: numerical results

To explore the parameter dependence of the KH instability in the astrophysical jet problem, we
compute the growth rate Im(¢,, ) for different selections of our standard variables Siz, 0wz, Bsh, bj,
bw, poj, pow, and f; for easy reference, these are listed in Tab. 4.1, along with short descriptions.

4.2.4.1 fBiz, 0wzy, and By dependence of instability for propagation perpendicular to
the jet-side magnetic field

As a first case, we consider a limit which is similar to pure hydrodynamic (HD) flow; we compute the
growth rate Im(¢,, ) in the Sizoz-plane, for fg, in the range 0.1-0.9 (b; = 20 and by, = 0 are held
fixed). We assume a ratio of wind-side density to jet-side density of pow/poj = 100. The parameter
f is chosen to be zero, so that the perturbation propagates perpendicular to the magnetic field
in the jet, i.e. k-Bg_ = 0; this choice is motivated by analogy to the symmetric shear problem,
in which the growth rate is maximized when the wave propagates perpendicular to the magnetic
field (Chandrasekhar, 1961; Miura & Pritchett, 1982; Hamlin & Newman, 2013).> The result of

the calculation in which we assume that k-Bg_ = 0 is satisfied is shown in Fig. 4.2; the grayed-out

SChandrasekhar (1961), for example, proved that for the symmetric shear problem in MHD (and for

1 82, (k-Bp)?

— , which is maximized for
oAV p Z

a tangential discontinuity), perturbations grow as Im(¢,,) =
k-By=0.
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region indicates a region of the parameter space that is physically inaccessible, according to the
definitions of Bi; and oy, (see Sec. 4.A for further details). Setting k - Bg— = 0 is somewhat
similar to HD because the perturbation propagates perpendicular to the magnetic field, so it does
not experience the restoring force of magnetic tension that it would, were it propagating with some
component parallel to the magnetic field. In fact, under a Lorentz boost by +/5s,/2 along z, the
present case is similar to the symmetric shear problem in HD with f = 0 (i.e. wave propagation
parallel to the direction of shear flow), which corresponds to the yellow curve in Fig. 4.1. Due to
the physical similarity to the symmetric KH problem, we may expect the present case to exhibit
a stability bound that is analogous to the classical one, M. > /2 (see Eq. 4.51). Indeed, if one
recasts the jet dispersion relation Eqs. 4.84 and 4.85 in terms of va and cs,% and considers the
unmagnetized case vy = 0 (and also f = 0), the dispersion relation may be written (to fourth order

in ¢s and fBy,) as a fifth-degree polynomial in ¢,

4 — AcsB be, + 6c2 85,07 — Bhon, — A Bl + 4Bl 68 — B2BLbh, + 262 Bandl, =0, (4.73)

whose physically viable solutions are

1 Bsh

4.74
¢Cs 2 Cq 9 ( )
Bsh"i_\/ :|:4CS Cs—\/C§+ﬁ§h>
. (4.75)
The solution with the minus sign in Eq. 4.75 becomes pure imaginary if
ﬁ b 2v/2, (4.76)

SHere, ¢, is defined with respect to the jet-side plasma.
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which is equivalent” to the classical bound Eq. 4.51 (see also Ferrari et al. (1980), Fig. 1, panel
(a)). Even for the large guide-field case presented in Fig. 4.2, the bound Eq. 4.76 may offer some
physical insight as to the meaning of the stable region at sufficiently low o,,; due to pressure
balance at the interface of the wind and jet, and because the wind side is in the present case
unmagnetized (as by = 0), the Alfvén velocity vy and wind-side sound speed cs, are related by
Co o = UA\/lm = VA \/%\/m, assuming nonrelativistic temperatures. By writing va in
terms of o, and substituting into Eq. 4.76, one obtains a (fg,-dependent) limit on oy, below
which the system is stable to perturbations, i.e.

i Pow BSQh

< — .
20 poj 1+ bj2

Owzr S Owz,crit =

(4.77)

While this argument is only heuristic in nature (in that it captures roughly, up to a constant
numerical factor, the scaling with S, of the lower bound of the unstable region with respect to
Owz; this lower bound is clear in Fig. 4.2), it may offer some physical intuition as to the origin of
the stable region at sufficiently low oy, (and low (i) that is evident in Fig. 4.2.

4.2.4.2 fBghy Umss Owzs and Fi, dependence of instability

In Fig. 4.3, we present the growth rate of the instability in the vy,s0sn plane, where vy is the

2 2
R
= . 4.78
Ums 1 Ui ( )

Parameterizing the growth rate in the variables vy,s and By, as an alternative to o, and 8, in Fig.

magnetosonic speed,

4.2, allows for a convenient transition between the HD limit and the magnetized limit that is our

"One must account for a Lorentz boost by +8.,/2 along x; B, in the jet problem is the total difference
in velocity between the two sides of the shear flow, whereas (¢, in the symmetric problem represents half of
the total velocity difference.
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main focus in the jet problem; note that for small va, the magnetosonic speed vy & ¢s, Whereas
for va &~ 1, vms &~ va.® The growth rate is computed for 3, € {0.01,1,100} (5, is the ratio
of ion thermal pressure to magnetic pressure, computed with only the out-of-plane component of
magnetic field) and oy, € {0,0.1,1}. The guide field in the wind is by, = 0; in-plane perturbations
(f = 0) are considered; and the ratio of wind-side density to jet-side density is 100. Note that by
fixing fiz, Owz, and vy, both the (in-plane) ion plasma-beta fi; and guide-field parameter b; are
determined. As in Fig. 4.2, the physically inaccessible regions are shaded gray.

A larger value of oy, corresponds to stronger in-plane magnetic field B;o (on the jet side; the in-
plane magnetic field is zero on the wind side), whereas smaller values of oy, correspond to weaker
in-plane magnetic field; 5, is an indicator of both the strength of the out-of-plane magnetic field,
as well as the temperature on the jet side. In the language of 0., and B, the HD limit corresponds
to oy < 1 and fi; > 1. Of the cases presented in Fig. 4.3, panel C (with £;, = 100 and o, = 0)
is closest to the HD limit. For this case, the magnetosonic speed is approximately equal to the
sound speed, which has a largest possible value of 1/ V/3; this is roughly where the gray-shaded
region of nonphysical parameter space begins.

As shown in panel C, the jet system is unstable when g, < vy, even as g, approaches zero;
which parallels the pure HD case (see, e.g., the yellow curve in Fig. 4.1). As the strength of
the in-plane magnetic field increases, the magnetic tension increases, and requires progressively
larger shear velocities to activate the instability (this can be seen by tracking, in the sequence of
panels C-F-I, the location of the lower instability bound, i.e. the boundary furthest to the left
delimiting the unstable region in fg,). Indeed, for this high-3;. case, the Alfvén speed is about
equal to \/m; for panels C, F, and I, the Alfvén speeds are 0,~0.3, and ~0.7, which

are approximately equal to the lowest possible values of (g, required to activate the instability (for

8Even when ¢, equals its maximum value 1/ V3, vms ~ 0.82, which is not too different from va ~ 1.
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owzr = 0,0.1, and 1, respectively). This stability bound at s, =~ va is analogous to the stability
bound at sufficiently low (relativistic) Mach number J, shown in Fig. 4.1. Note that in Fig. 4.1,
there is a (-dependent (¢ = v /cs is the Alfvénic Mach number) stable region, located roughly at
¢ =~ JM,; considering the nonrelativistic limit for simplicity, this corresponds to a stability bound at
Bsh = va. Physically, the condition that the instability is suppressed for Sg, < va corresponds to
magnetic tension suppressing growth of the perturbation, if the perturbation does not have enough
energy to propagate along the magnetic field. As the magnetic tension increases (along the direction
of wave propagation), the minimum energy required to activate the instability, and correspondingly
the minimum shear Sy, (which is the source of free energy supplying growth of the perturbation),
increases.

Panels A, B, D, E, and F (in Fig. 4.3) are also shown to satisfy (roughly) the criterion for
instability (Bsh > v/0wz/(1 4+ owz)); for smaller values of i, (= 1,0.01), this bound appears to hold
when vys & va, which is true as vy,s decreases toward the nonphysical gray region (this implies cg
is minimized). In addition to decreasing the area of the vy,sfsn plane over which the instability is
active, increasing the in-plane magnetic tension decreases the magnitude of the growth rate. Even
at 0w, = 1, an upper bound for instability exists, evidently as a deformation of the line vy, o Bsn
in the HD limit (panel C).

For the sequence of panels C-B-A (04, = 0, and £, = 100,1, and 0.01), the shape of the
unstable region is largely unchanged (apart from the physically accessible region, whose upper
limit approaches the maximum possible value of the magnetosonic speed, Vs max = (3 + \/§) /6),
because decreasing (i, allows for larger magnetic fields, and in turn larger Alfvénic velocities). The
magnitude of the growth rate Im(¢,, ) decreases, but this is largely due to the chosen normalization
¢vy = w/(kva), and should not be interpreted as a statement that the growth rate of the instability

is intrinsically smaller at low (i, .
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b,=20,k-B=0

Figure 4.2: 3;, and o0,,, dependence of instability in the jet problem for Sy, in the range 0-0.9; for this
case, the guide-field parameter in the jet is b; = 20, and the perturbation propagates perpendicular to the
magnetic field. Dark regions are stable, blue regions are unstable, and hatched gray regions are physically
inaccessible regions of the (i,0, plane (see Sec. 4.A).

4.2.4.3 Biyy Owzs Psh, and b dependence of instability

In Figs. 4.4, 4.5, 4.6, and 4.7, we present a series of calculations of the growth rate Im(¢,, ) for jet
guide fields b; = 0,0.3,1, and 3, respectively; growth rates are computed in the fi;0,, plane (as in
Fig. 4.2), for S, in the range 0.1-0.9 (the layout is similar to that of 4.2). As before, the density
ratio is fixed to pow/poj = 100, but here we consider perturbations with f = 0.

We focus first on Fig. 4.4, with b; = 0; this corresponds to purely in-plane magnetic field.
The sequence of panels A-I demonstrates that as Sy, increases, the instability is suppressed; by
Bsh = 0.9, the magnitude of instability has decreased, and the region of instability shrinks.

Comparing the two cases b; = 0 (Fig. 4.4) and k- B = 0, b; = 20 (Fig. 4.2), one notices a
substantial difference in the unstable region, especially at low £i,. In Fig. 4.4, the unstable region

at low (i, covers only a sliver of the range of o,,,, whereas in Fig. 4.2, there is evidently no upper
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Figure 4.3: Sy, and vy dependence of instability in the jet problem for §;, in the range 0.01-100 and
Owe in the range 0-1.

stability bound in o, (the unstable region extends to at least o,, = 1 in all panels of Fig. 4.2).
A physical reason for this remarkable difference in upper stability bounds when comparing the
bj = 0 and k- B = 0 cases is that for the former, the wave propagates along the magnetic field, and
thus the instability depends on the magnetic tension; in particular, for o, sufficiently large, the
restoring force of the magnetic field inhibits the instability (for fixed Sy, and independently of i,
when i, is small). On the other hand, for the case with bj = 20 and k-B = 0, the wave propagates
perpendicular to the magnetic field, and is therefore insensitive to the effect of increasing oy,
(regardless of oy, the perturbation propagates perpendicular to the magnetic field, for all points
computed in Fig. 4.2).

Figs. 4.5-4.7 show the Biz, 0wz, and Bg, dependence of the instability, for jet guide fields
b; = 0.3,1, and 3, which helps to clarify the transition from the extreme case of in-plane propagation

parallel to the magnetic field (Fig. 4.4), to in-plane propagation perpendicular to the magnetic
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field (Fig. 4.2). Comparing the sequence of figures (Fig. 4.5)—(Fig. 4.6)—(Fig. 4.7) shows that for
increasing guide field, the lower stability bound decreases, and the upper stability bound increases,
so that the unstable region extends to cover a larger range in oy,. By bj = 3, panels D-I (Fig. 4.7)
indicate instability for o, as large as 102, similar to the extreme case presented in Fig. 4.2, for

which the perturbation propagates perpendicular to the magnetic field.

Figure 4.4: §;, and o0,,, dependence of instability in the jet problem for By, in the range 0-0.9; the guide-
field parameter in the jet is b; = 0.
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b,=0.3

Figure 4.5: The layout is similar to that of Fig. 4.4; S, and 0., dependence of instability in the jet
problem for Sy, in the range 0-0.9; the guide-field parameter in the jet is b; = 0.3.

Figure 4.6: The layout is similar to that of Fig. 4.4; S, and 0., dependence of instability in the jet
problem for Sy, in the range 0-0.9; the guide-field parameter in the jet is b; = 1.
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Figure 4.7: The layout is similar to that of Fig. 4.4; 8, and 0., dependence of instability in the jet
problem for Sy, in the range 0-0.9; the guide-field parameter in the jet is b; = 3.

4.2.4.4 pow/poj dependence of instability
In Fig. 4.8, we show the dependence of the growth rate on the ratio of wind-side density to
jet-side density, computed via numerical solution of Eqs. 4.84 and 4.85. For this calculation,
Bsh = 0.8, Biz = 1074, 0 = 1, bj = 3, and by, = 0.3; the parameters of the calculation are listed in
the upper right of the figure.

The shape of the curve resembles one that follows from the classically known result for the KH
growth rate, allowing for different densities on either side of the interface (see e.g., Chandrasekhar

(1961)):

P1P2
Im(¢) o \/ (r+ )2 (4.79)
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where Im(¢) is a dimensionless growth rate, and p; and ps are the densities of the two fluids.”
According to Fig. 4.8, the magnitude of the instability decreases as the ratio poyw/poj increases, but
even at pow/poj = 1000, the growth rate decreases by only a factor of ~3 relative to the growth
rate at pow/poj = 1. This observation has important astrophysical implications, as realistic density

ratios pow/po; may limit the regions of the jet which are strongly KH unstable.

10 10" 10° 10 10°
Pow/Po;

Figure 4.8: Dependence of instability growth rate, in the jet problem, on the ratio of densities between
wind and jet.

4.3 Relativistic MHD simulation

All the discussion so far was based on analytic methods and linear stability analysis. As a reality
check, we use numerical simulations of the symmetric KH setup, as well as the astrophysical jet
problem (described in Secs. 4.2.1.1 and 4.2.1.2, respectively), to measure instability growth rates
and compare with predictions of the dispersion relations, Eqgs. 4.34, 4.41 and Eqs. 4.84, 4.85. To
simulate the KH instability in relativistic MHD, we use the publicly available code PLUTO (Mignone

et al., 2011). We perform both two-dimensional and three-dimensional simulations; the latter of

We note that, according to Eq. 4.79, the growth rate in the symmetric KH problem decreases by a
factor of ~16 as the density ratio increases from p;/p2 = 1 to p1/p2 = 1000; this differs from the result
computed for the jet setup in Fig. 4.8, where the growth rate decreases by a factor of ~4 as the density ratio
increases from pow/poj = 1 to pow/poj = 1000. To account for this difference, we remark that Eq. 4.79 does
not account for the effect of magnetic fields; as shown in Sec. 4.2.4.3, magnetic fields modify the parameter
dependence of the instability relative to the unmagnetized case.
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these allows for testing of the f dependence of the dispersion relations.

4.3.1 Simulation setup

Here, we describe the simulation setup for the jet problem (the setup for the symmetric shear
problem is similar). The setup described here is based on the one presented in Sec. 6.6 of Mignone
et al. (2011).

Simulation coordinates are as follows: xy is the 2D simulation plane, with z € [0,1] and y €
[—1,1]. The = dimension is typically resolved with 1280 cells, whereas the y dimension is resolved
with 2560 cells (for 2D simulations). The domain is periodic along z, and outflowing along y (for
3D simulations, the domain is also periodic along z).

We initialize a smoothly varying shear profile in which the flow is along x and the flow velocity

varies with y, as well as a small perturbation to the y velocity:

v(z,y) = {;h (1 + tanh (%)) , esin(kyoz) exp (;;) ,o} . (4.80)

Here, Bq, is the velocity difference between jet and wind, e = 107> is the amplitude of the pertur-
bation, and we take o = 0.005, and 8 = 0.1 as fiducial numerical choices; in general, we choose «
to ensure that the transition of v, across y is resolved with at least 13 cells along the y direction.
The choice of « is further discussed in Sec. 4.B.

The magnetic field profile is also smoothly varying, and contains an in-plane component on the

jet side, as well as out-of-plane components on both the jet and wind sides:

B(z,y) = {BO (1 - % (1 + tanh (Z))) ,0, B <bw + %(bj — by) (1 — tanh (Z))) } . (4.81)

b; and by, are the guide-field parameters controlling the strength of the z component of magnetic
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field. The profile of thermal pressure is chosen to ensure that total pressure is constant along y,

1 1
p(@,y) = pi + 5(Bg + 0{Bg) = 5 (Ba(2,9)* + By(w,y)* + Ba(w,9)%), (4.82)

where p; is the chosen jet thermal pressure, which is controlled by the initial choice of jet-side ion
plasma-beta and magnetization. This choice of thermal pressure profile sets p(x,y) = pj on the jet
side (sufficiently far from the transition, y < 0), and on the wind side p(z,y) = p; + 5(Bg + ijBg -
b2 B2) (for y > 0). The profile of initial mass density is

p(,5) = pow + 5 (o5 — pow) (1 — tan () (4.83)
4.3.2 Simulation results: astrophysical jet
Here, we compare the growth rate of the KH instability, computed via the dispersion relation Eq.
4.72 (written in full in Egs. 4.84 and 4.85), with measurements of the growth rate in relativistic
MHD simulations. To start, we briefly outline the method for extracting growth rates of the KH
instability from simulations.

We measure the growth rate of the instability via growth of the quantity [0, (kz0)[? in time, which
is the amplitude squared of the Fourier transformed velocity field v, (for simplicity of discussion,
we consider v, to be a two-dimensional field). By means of a Fast Fourier Transform (FFT), we
compute [0y (ks, ky)|? at each output step of the simulation; the arguments k&, and &, can be any of
the allowed wave vectors on the (discretized) domain: k, = (27/L;),2 - (2n/Ly), -+, ng - (2w/Ly)
(ng is the number of grid points in z), and similarly for k,. At each output step, we measure the
amplitude squared at the wavevector k = (kzo, ky1), where kg is the wavevector of the initialized
perturbation and ki is the wavevector of the longest wavelength perturbation in y (this choice

typically captures the peak in k-space of the initialized perturbation). Prior to computing the
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FFT, we apply a Gaussian Filter to the field vy(x,y) ; the filter is centered at the interface of the

shear, with a width that is 20% of the domain in y (this procedure helps to reduce noise).

---theory
—— PLUTO

0 5 0 15

4.5

4.0

3.5

13.0

125

t=175(,ko)  |DERS

Figure 4.9: For a jet simulation with g8, = 0.078, 0wz = 1, s = 0.8, b; = 3, by, = 0.3, f = 0,
and pow/poj = 4, (A) Time evolution of Fourier amplitude, (B)—(D) 2D snapshots of the density at times
indicated in the upper right of each snapshot; these are indicated also by color coded vertical lines in panel

A.
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4.3.2.1 Example simulation with PLUTO

As an example, we show in Fig. 4.9 the growth of |0, (kz0)|? in a simulation of the KH instability
via the jet setup (the simulation parameters are fi; = 0.078, 0y = 1, Bsn = 0.8, bj = 3,by = 0.3,
f =0, and pow/poj = 4.). The red curve (see panel A) shows the time evolution of the amplitude
squared |Uy(kg0)®. There is an initial ‘dip’ from around ¢ = 0 (vakyo) ™! to t = 2.5 (vakyo) ™t
This is common to many of our simulations, and we believe the reason for this feature is that our
initialized perturbations do not correspond to an exact eigenmode of the system. From around
t = 5 (vakeo) ! to t = 10 (vakyo) ™!, the quantity |'17y(k:xg)|2 shows a linear growth phase, before
entering a nonlinear phase around ¢t = 11 (vAkxo)_l. To measure the the growth rate, we fit a line
to the measured curve during the linear growth phase; the slope yields twice the growth rate. The
blue dashed line in panel A of Fig. 4.9 shows the predicted growth rate, as computed using Egs.
4.84 and 4.85.

Panels B-D of Fig. 4.9 show the time evolution of mass density during the nonlinear phase
(the times of these snapshots, indicated in the upper right of each panel, is color coded to match
vertical dashed lines in panel A). Earlier on (panels B and C; times ¢t = 11.7 (vakzo) ™! and ¢t =
13.6 (vakzo) '), smaller wavelength perturbations have grown to macroscopic scales; note that
roots of the jet dispersion relation are constant, ¢,, = w/(vavk2+ m2) = const.; thus, modes
with larger wavevectors grow and saturate prior to those with lower wavevectors. By comparing
panels C and D, this is evident; at t = 13.6 (vakzo) ! around fifteen small wavelengths fit in the box
along x, but not until t = 17.5 (vakyo) ! has the wave with k, ~ 3 (27/L) grown to a macroscopic
scale.
4.3.2.2 Comparison of simulation growth rates with analytical predictions
The Bi; dependence of the growth rate Im(¢.,), for the jet problem, is shown in Fig. 4.10; Sy, =

0.165 and o, = 0.01 are fixed; in this simplified case, the other parameters are set to bj = 0, by, =
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0, f =0, and pow/poj = 1, which allows us to isolate the role of S, for a case with nonrelativistic
shear and no guide field. The blue line shows the growth rate as predicted from the dispersion

relation (Eqs. 4.84 and 4.85), and the red circles show growth rates measured in simulations.

0.6 —— theory
o PLUTO
~, 0.4}
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0.0 — NEN
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Figure 4.10: f;, dependence of growth rate, for the jet problem; comparison between simulations and
numerically computed solutions to the dispersion relation. For the simulations shown here, Bs;, = 0.165,

ows = 0.01, b, =0, by =0, pow/po; =1, and f = 0.

Decreasing from high £, down to 5i; — 0 (which corresponds to increasing the in-plane magnetic
field), the instability is inhibited at around fi; = 7. With regard to the shape of the predicted
curve, the linear theory and numerical simulations show adequate agreement.

On the other hand, the simulations tend to underestimate the growth rate, however this is
expected because the analytical prediction assumes a sharp velocity discontinuity, whereas the
simulations employ a tangential shear profile; in this case, the prediction should be interpreted as
an upper limit to the growth rate measured in simulations. Convergence of measured growth rates

to predicted growth rates, with respect to the numerical parameter « (see Sec. 4.3.1) is discussed

in Sec. 4.B.
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Figure 4.11: o, dependence of growth rate, for the jet problem; comparison between simulations and
numerically computed solutions to the dispersion relation. For the simulations shown here, 8, = 5 x 1075,
Bsn = 0.2, bj =0, by, =0, pow/po; =1, and f = 0.

In the next test, shown in Fig. 4.11, we explore (for the jet setup) the o, dependence of the
growth rate Im(¢,,) for fixed B, = 5 x 107° and Sy, = 0.2. This is a simple case similar to the
previous, with b; = 0,by, = 0, f = 0, and pow/poj = 1. This case, unlike the previous, has both
small §;, and small o,,, so that temperature and magnetization are nonrelativistic. The curve
shown in Fig. 4.11 corresponds to a vertical cut along o, in panel B of Fig. 4.4 (the plots in Fig.
4.4 only extend down to B, = 1073, but give an impression of the part of parameter space that is
probed in Fig. 4.11). The measured growth rate at 0, ~ 8 x 1072 is larger than the prediction by
a modest amount, and the other measurements within the unstable region show good agreement

with the prediction. The predicted stable region shows robust agreement with the simulations.
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Figure 4.12: b; dependence of growth rate, for the jet problem; comparison between simulations and
numerically computed solutions to the dispersion relation. For the simulations shown here, Sy, = 0.14,
Biz/ (1 + bf) =5x 1075, 0y = 0.01(1 + bf) =5x 10, by =0, pow/poj = 1, and f = 0; By, and oy, are set
so that the magnitude of the magnetic field is constant as b; varies.

Next in the sequence, Fig. 4.12 shows the b; dependence of the growth rate. For this test, the
total ion plasma-beta [; 101 = 2pi/B% =5 x 107° and total magnetization Ow,tot = B%/wo = 10 are
fixed (still, by, =0, f =0, and pow/poj = 1). At low bj, the magnetic field is aligned approximately
along x, and as bj increases, the field is rotated to the out-of-plane direction (that is, z), and during
this rotation, the magnitude of the magnetic field is held fixed. Fig. 4.12 reiterates physics that is
familiar from discussions in Sec. 4.2.4: when the perturbation propagates along the direction of the
magnetic field (as is the case for low b;), it is subject to the stabilizing effect of magnetic tension;
as bj increases in Fig. 4.12, the field simply rotates from the in-plane direction to the out-of-plane
direction (the magnitude of the magnetic field is fixed because i ot and o, tot are held constant),
and the growth rate increases. Indeed, more variation in the growth rate Im(¢,,) happens around
bj~1 than around, e.g., bj~10 because more rotation of the magnetic field is happening around b;~1

than ijlO.

The simulations agree well with the predicted growth rates.
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Figure 4.13: f dependence of growth rate, for the jet problem; comparison between 3D simulations and
numerically computed solutions to the dispersion relation. For the simulations shown here, 5y, = 0.4,
Biz =5 X 102, 0pe = 1074, by = 10, by, = 0, and pow/poj = 1.

In Fig. 4.13, we use three-dimensional simulations to test the f dependence of the dispersion
relation, for By, = 0.4, fiz = 5 x 102, 0, = 107%, and bj = 10. Because fi; is large and oy, is
small, this case approaches the hydrodynamic limit. The growth rate is symmetric with respect to
f, which we expect in the HD limit; if in the present case, the magnetic field were strong instead
of weak, varying f would in turn change the alignment of the propagating wave relative to the
magnetic field; in this scenario, we expect the maximum of the growth rate to be centered around
a value of f corresponding to propagation perpendicular to the magnetic field (i.e., the maximum
of the growth rate should be achieved when k - Bo_ ~ 0).1° Fig. 4.13 also suggests that, in the
absence of a strong magnetic field, the growth rate strictly decreases as f — +o00, or as the wave
comes to propagate, in the plane of the interface, perpendicular to the direction of the shear flow.
This is physically intuitive, based on symmetry.

Simulation results agree with the linear theory.

10Tndeed, this expectation is confirmed in Fig. 5.7, where we show the f dependence of the growth rate
for a case with o,,=1 and b; = 3.
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Figure 4.14: [y, dependence of growth rate, for the jet problem; comparison between simulations and
numerically computed solutions to the dispersion relation. For the simulations shown here, 5i, = 0.078,
ows =1, bj = 3, by, = 0.3, pow/poj =4, and f = 0.

Lastly, we explore a jet case that is more physically motivated than the previous several. Fig.
4.14 shows the S, dependence of the growth rate Im(¢,, ), for S, = 0.078, oy, = 1, bj = 3, and
also a guide-field component in the wind, b, = 0.3. As (; increases from zero to one, the system
becomes unstable to perturbations around g, = 0.35. As we argued in 4.2.4, this stability bound
is related to the stabilizing effect of magnetic tension; there is a certain threshold in B¢, that is
required to activate the instability. Indeed, in the absence of an in-plane magnetic field, we might
expect this case to be unstable all the way down to Sg, = 0. Fig. 4.14 also demonstrates that the
growth rate is rapidly suppressed in the relativistic limit, i.e. Bg, — 1.

The predicted curve agrees with the simulations.

4.3.3 Simulation results: symmetric shear flow
In this section, we present a few comparisons between growth rates computed via the symmetric

KH dispersion relation, Eqgs. 4.34 and 4.41, and growth rates obtained via numerical simulation.
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Figure 4.15: [, dependence of growth rate, for the symmetric shear problem; comparison between sim-
ulations and numerically computed solutions to the dispersion relation. For the simulations shown here,
Ban = 0.165, 0w = 0.01, and f = 0.

Fig. 4.15 shows the dependence of the growth rate on Sy, for oy, = 0.01, and two values of shear
speed, Bsh = 0.165 (panel A) and g, = 0.33 (panel B). We consider in-plane perturbations (f = 0).
In panels A and B, we see that for both cases (s, = 0.165 and S, = 0.33), the system is stable
for sufficiently low fi,; for Bg, = 0.165, Biz < 1 corresponds to stability, and for Sy, = 0.33, Siz < 4
corresponds to stability. We note that for the cases presented in panels A and B, o, = 0.01, and
Bi 2 1, so this regime is similar to the classical HD limit. Furthermore, increasing (3, in these cases
serves as a temperature control (because oy, is fixed), and this corresponds to raising the sound

speed in the fluid. In the pure HD limit, we recall the criterion for instability, Sg, < ¢s (ignoring

factors of order unity). Taken together, panels A and B show qualitative agreement with this
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criterion; Bg, = 0.33 is greater than Sgp = 0.165, so the former case demands a higher sound speed
(equivalently, higher temperature, which is controlled by 5i;), so we expect that for Sy, = 0.33,
the value of B;; required for the system to be unstable is larger than the valuve of 8;, required for
instability when Sy, = 0.165.

In Fig. 4.16, we present a three-dimensional test of the symmetric shear setup, and compare
with the predictions of the dispersion relation. Fig. 4.16 shows the f dependence of the instability
growth rate for By, = 0.165, Biz = 5, and o, = 0.01. The series of simulations shown in Fig.
4.16 parallels the two-dimensional simulation indicated by the point at £, = 5 in panel A of Fig.
4.15. The two-dimensional and three-dimensional simulations are reasonably converged: for the
point at f = 0 in 4.16, Im(¢.,) =~ 0.31, and for the point at B, = 5 in Fig. 4.15, Im(¢,,) ~ 0.32.
The parameters for these simulations again correspond approximately to HD, and so several of the
features noted during the discussion of Fig. 4.13 reappear in Fig. 4.16; in particular, the curve

appears to have a maximum at f = 0, as expected in pure HD.
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Figure 4.16: f dependence of growth rate, for the symmetric shear problem; comparison between 3D
simulations and numerically computed solutions to the dispersion relation. For the simulations shown here,
Bsn = 0.165, 0 = 0.01, and B, =5
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4.4 Summary

In this chapter, we have explored by means of linear analysis and relativistic MHD simulations
the Kelvin-Helmholtz instability in a symmetric shearing flow setup, along with an astrophysically
motivated problem corresponding to shear flow at the jet-wind interface. We derived a dispersion
relation governing the propagation of waves at the interface of the jet and wind, and computed the
growth-rate dependence on parameters of the jet-wind system. We confirmed that the jet dispersion
relation Eqgs. 4.84 and 4.85 respects the classical bound of stability for the hydrodynamic Kelvin-
Helmholtz problem, By, /cs > v/2.

We have performed two-dimensional and three-dimensional relativistic MHD simulations to test
the jet dispersion relation, and also the more well-studied dispersion relation for symmetric shear.
In most cases, we find adequate agreement between linear theory and the dispersion relation, thus
confirming the validity of the analytical calculations.

In the coming chapter, we extend this exploration of the KH instability with fully-kinetic particle-
in-cell simulations, which are capable of capturing from first principles the interplay between mag-
netic fields and charged particles, and in effect the dissipation of magnetic energy in collisionless
plasma. The question of magnetic dissipation via the KH instability in astrophysical jets remains
largely underexplored, especially with respect to particle-in-cell simulations; such an investigation
is thus important in clarifying the connection between the KH instability and magnetic dissipation
in collisionless plasma (via, e.g., magnetic reconnection).

4.A Astrophysical jet: dispersion relation equations

Here, we state explicitly the form of the functions F; and F5 in Egs. 4.54 and 4.70, respectively,
and elaborate on several practical details related to the calculation of solutions to the jet dispersion
relation. While in Eqgs. 4.54 and 4.70 we suppress the dependence on m;/m,. (i.e., we assume

mi/me = 1), we have assumed in the derivation of Eqgs. 4.84 and 4.85 that the plasma may consist
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of ions and electrons with different masses. Note that, according to the arguments of F; and F5,
each depends on both poj and poy; this dependence is hidden in the placeholder function r,, (whose
arguments are suppressed in Eqs. 4.84 and 4.85), which is provided further below (see Eq. 4.87).

In explicit form, Eq. 4.54 may be expressed as

Fi(bvp sk, Bizs Cwss Pojs Pows Bshs bjs by, [rmi/me) =
— (L + )R (1 = BL)owa(—(k + b fF)* BiaTaa (1 + Owe + b 0we)
+ (L4 b)E(1 + BiaTaqy + f2(1 + BicLadj) + Bieladjowe + 205 f Bzl ad jOwa
07 (1 + F2(1+ Buladjows)) by, — (L+6)*(1+ [k ¢y, )

: (bgvaTirka&r(l - 5§h)2rad,ja12ux(1 + O + ijUwr) - (ba,rw(l - Bs?h)awm

+ Tgsﬁixrad,jawx)(k/@sh\/l + Owe + bj2awaz - (1 + f2)k2
(L4 )00 d0,)D)) /(L + 0w + 020we)* (1 + 0370(1 — B3)0wa)

((k+ bjfk)QBi:cFad,jwa —((1+ bjz)(l + f2)k2(1 + bj2 + Binad,j)wa¢12;A)

/(L + ows + b?wa))((kﬁsh —V(1+ fZ)kz\/((l + ij)wa)/(l + Owz + ijwa)¢vA)4
+ (o fore ruk®Bia(L = B) Taagons (R (1= B) + (k = V(1 + [)k%Ban

) \/((1 + bjz)aww)/<1 + Owe + ijwa)¢vA)2))/(1 + warw(l - Bsh)aww)

— (kB = VT PR (L4 8)00) /(1 + O + B0 B0, )?
- (r? Bl ad jowe (FPR*(1 = B3) + (k — /(1 + f2)k2Ban

: \/((1 + b?)awx)/(l + Owz + bj2‘7w:c)¢vA)2) + (05w (1 = B3)owe (F2R°(1 = B3)

+(1- Tgsﬁixrad,jawx)(k —V(1+ fZ)kQﬁsh\/((l + ij)wa)/(l + Owa + ijO-’LUCE)d)'UA)2))

/(1 + b%vrw(l - th)awz))))%

(4.84)
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and Eq. 4.70 may be written as

F2(¢UAak7 ﬁi:pa Owzxy P0js POw Bshv bja bW? fa mi/me) =
(1 +68)rw(l = BA)owa((k + b fk) — (L + ) (1 + f2)k?¢7, )

/ (R(=(2V/ (T4 f2)R2Ban (1 + ) 0we)* (=1 = byru(1 = B3)0we) oy ) (4.85)

/ (wa\/l + Owz + bjzgwx)) + (1/(1 + Owz + b‘]zaw:v))(l + b?)k((l + Owz + ijwa)
: (b?,vrwawx(l - th)(fQ(l - 52}1) - th) - §h)

— owz(1+ bjz)(l + f2)(1 + ba,rw(l - BSQh)me)¢3A)))'

The expressions r., and r,, appearing in Eqgs. 4.84 and 4.85 are placeholders for auxiliary functions

representing the ratios of sound speeds cgj/csw and enthalpies wo;j/wow, respectively:

I"ad (Bow ) Oowhoj (6o;)
Tey, = , 4.86
\/Fad(90j)90jh0w(90w) (4.86)
_nojho;(bo;)
w — — bl 4.87
" nOwhOW(GOW) ( )
where
1 Laa(0o;) Me mi  Tad(6oj)
() = = . —adl0j) Te (1 i 2adlV0j) 4.
hoj(6o;) 5 <<1 + B Toa(00) — 1 + o + B 70 T (Gog) — 1 , (4.88)
1 Taa(fow) Me mi  Tag(fow)
_ - _LadWow) ) Me (4 g0 T LadBow) 4,
hOw(‘gOW) 2 <<1 + 90W Fad(QOW) 1 + ms + QOW Me Fad(QOW) 1 ’ ( 89)

and the adiabatic index is evaluated using a fitting formula (Synge, 1957; Service, 1986):

Ta(6) = %(5 — 1.21937(6/(0.24 + 6)) + 0.18203(0/(0.24 + 6)) — 0.96583(6/(0.24 + 6))?
(4.90)

+2.32513(0/(0.24 + 0))* — 2.39332(0/(0.24 4 0))° + 1.07136(0/(0.24 + 6))9)).
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While we suppress the arguments of fp; and gy, in Eqgs. 4.88 and 4.89 for readability, it should be
noted that these are in fact functions of our canonical parameters. In practice, the first of these
must be evaluated by means of a root-finding algorithms. In particular, we seek numerically a

solution to the equation

90j (Bima Owxy mi/me) = 6ix0—wmh0j (QOj (Bima Owxy mi/me))a (491)

which may not exist. Indeed, it may be shown that solutions exist only for fiz < Bizmax = 1/(40wz),
which dictates the maximum possible Bi;, given oy,. To compute the wind-side dimensionless

temperature, we use the equation

Bow (Bias Twas POj> Pow Bsh, b, by f,mi/me) = (4(mi/me)/)0j90j (Bizs Owzs mi/me) + (1 + mi/me) po;

e gy at <ﬂix,awx7mi/me>>am> ) <4mw(mi Jme) ﬁ) ;

(1 + me/m)

(4.92)

this is derived from total pressure balance (including both thermal and magnetic pressure) at the
interface of the shear.

4.B Convergence of measured growth rate with respect to «

In our simulations, we have explored the effect of varying the ratio of the length of the transition
width to domain size in x, with regard to the measured growth rates we extract. In particular, we
studied the effect of varying the parameter a (see Sec. 4.3.1), while fixing the number of cells with
which the transition is resolved. We define the transition width as Ay = 2L,«, where L, is the
length of the box in cells. We find that ~13 cells are required to adequately resolve the transition
width A¢; below this threshold value, we find that the onset of nonlinear effects is hastened, and

obfuscates the linear growth phase that is the focus of our simulations.
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In Fig. 4.17, we show four series of simulations (indicated by square, triangle, circle, and cross
markers) with successively smaller values of «, yet in each of the four series, the transition width is
resolved with ~13 cells; this is achieved by increasing the dimensions of the box as o decreases. In
the limit that o — 0, the transition profile approaches a step function, which is the profile assumed
in the derivations of the dispersion relations Eqs. 4.34, 4.41 and Eqs. 4.84, 4.85; for this reason, we
suspect that as a decreases and A is held fixed, the growth rates measured in the simulations will

approach the prediction of linear theory; the trend in Fig. 4.17 is suggestive of this convergence.

0.6F j ]
B, =0.165,0,,=0.01
0.4}
é)m
E
021 o a=1/50
A a=1/100
A g o a=1/200
% a=1/400
0.0 [ .|1:| -
10 10
Bix

Figure 4.17: Four series (each indicated by a different shape) of simulations with progressively smaller
ratios of transition width to box length in x; for each series, the transition width in cells is fixed, Ag~13.
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5. Kelvin-Helmholtz 11

5.1 Introduction

In Ch. 4, we used relativistic MHD simulations to test an analytically derived dispersion relation
(Egs. 4.84 and 4.85), and found agreement between the simulations and theory, thereby confirming
the validity of the jet dispersion relation. In this chapter, a companion to Ch. 4, we now assume that
the jet dispersion relation is valid, and use it to study the jet setup in fully-kinetic particle-in-cell
(PIC) simulations.

The outline of this chapter is as follows: In Sec. 5.2, we describe the setup and numerical choices
in our PIC simulations. Next, in Sec. 5.3, we study the growth rate of the KH instability using
the setup described in Sec. 5.2; we discuss also, for a sample case, magnetic dissipation induced by
KH mixing. We conclude with a brief summary in Sec. 5.4.

5.2 Simulation setup

Here, we describe the simulation setup we use to study the KH instability, and specify the fiducial
parameters and numerical choices we use in our simulations.

5.2.1 Description of setup

Since it is difficult to find a Vlasov equilibrium for the shearing flow problem (Henri et al., 2013),
our setup is built on the notion of fluid equilibrium.! In the setup description below, naturalized
Gaussian units are assumed, with 47 = ¢ = kg = 1. The fields (electromagnetic, velocity, tempera-
ture, etc.), which implicitly depend on z, are uniform in the x direction, and so we suppress in our

notation the explicit reference to the x dependence of the fields.

!Especially when gradients in the magnetic field are large, kinetic effects (such as the grad-B, diamagnetic,
or other particle drifts) may render the fluid equilibrium an unsuitable initial condition in a fully-kinetic
simulation; in practice, we have addressed the appropriateness of using fluid equilibrium as an initial condition
on a case-by-case basis.
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The magnetic field B(y) = (B(y), By(y), B»(y)) is chosen to follow a smoothly varying profile:

Ba(y) = By {1 - % (1 + tanh <iyt sin (%W))ﬂ : (5.1)

.00 B o+ S o (1w (S ()] s

t gy

Here, By is the magnitude of the in-plane magnetic field (in the x direction), and Byby, and Byb;
are the guide field strengths (in the z direction) in the wind and jet, respectively. Ay is the width of
the jet-wind transition. The profiles here are similar to those used in Sec. 4.3.1 (see Eq. 4.81) for
the setup of the jet problem in PLUTO, but note here that the argument of the hyperbolic tangent
varies sinusoidally; this difference accounts for the periodic boundary conditions we use in our PIC
setup (note that for the MHD setup of the jet problem, our boundary conditions are periodic along
z, and outflowing along y, whereas for the present PIC setup, boundary conditions are periodic
along both x and y). With the periodic boundary condition implied by Eq. 5.1, the part of the
domain (1/4)¢, <y < (3/4)¢, corresponds to the jet, and y < (1/4)¢, or y > (3/4)¢, corresponds
to the wind.

We choose the profile of bulk velocity v(y) = (v2(y),vy(y),v:(y)) also to follow a smoothly

varying profile:

va(y) = % (1 + tanh (iyt sin (2#/_651//4))) : (5.4)

vy(y) =0, (5:5)

v.(y) = 0. (5.6)
The magnetic field and bulk velocity profiles, along with the force free condition E = —v x B,
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determine the electric field:

Ex(y) =0,

E,(y) = —% (1 + tanh <iyt sin <27ry_€iy/4)>) (5.7)
- By [bw + %(bj — by) (1 — tanh <iyt sin <27ry_éy/4>>)] :

E.(y) =0. (5.8)

This electric field is not divergence free, and therefore requires nonzero charge density p,(y) =

qi(ni(y) — ne(y)) to sustain the electric field (¢ here is the fundamental charge, with positive sign):

pq(y) =V - E(y),

_ BomBa y—4Ly/4 Ly y—Ly/4\ )
v cos (27r£y sech A, sin | 27 0 (5.9)

: [bw — (b — by) tanh (iyt sin (2#@?*”/4))] .

Curl of the magnetic field generates (dimensionless) current j(y) = (jz(y), jy(v),72(y)), via Am-

pere’s law:

. Bor . y—0,/4 b, . y—L,/4\\>

Jz(y) = Y (by — bj) cos (277 3 sech A, sin | 27 3 , (5.10)
Jy(y) =0, (5.11)
. Byr Y — /4 [N

J(y) = e cos (271'% sech A, sin [ 27 7 . (5.12)

Lastly, we choose an ‘unperturbed’ profile n(y) for total number density, in the frame comoving
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with the bulk flow along z (indicated by the overtilde):
1 14 — 0, /4
n(y) = noj + = (Mow — Tig;) | 1 — tanh | - sin 2wu . (5.13)
2 A 0y

In the limit of no currents and no shear velocity, the electron and proton number densities ne(y)
and n;(y) (in the lab frame) add to the unperturbed profile, ne(y) +ni(y) = n(y), but in general the
total number density n.(y) + ni(y) can be different from n(y), depending on the local bulk velocity
and requirements of Gauss’s law. As we will see in Eqgs. 5.25-5.27, the lab frame profiles n(y) and
ni(y) are in fact chosen so that 1) when their corresponding rest frame profiles ne(y) and ni(y) are
multiplied by chosen? modulation factors (1 + Az (y))~! and (1 — Az(y)) ™!, respectively, the sum
ne(y)(1 4+ Az(y)) ™! +7i(y)(1 — Az(y)) ™! is equal to the desired rest frame density profile, n(y),
and 2) the lab frame profiles satisfy Gauss’s law, V - E(y) = ¢i(ni(y) — ne(y)).

Note that Eq. (5.13) prescribes a density profile 72(y) in the comoving frame; according to this
density profile, some number of particles, each with four-momentum of the form (7, ), is initialized
in the comoving frame, then a Lorentz transform is applied to convert the particle’s momentum to
the lab frame. Care must be taken in translating from the comoving frame to the lab frame, as the
volume of a grid cell is held constant when applying the boost (Melzani et al., 2014; Zenitani, 2015).
Following the insight of Zenitani (2015), consider the distribution initialized in the comoving frame,

f(x,u); further consider that, to convert to the lab frame, this distribution is boosted along = by

2Both modulation factors are determined by the choice of Az (y), which is treated as a free variable in
Eqgs. 5.21-5.27.
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(T, —=T'Bsn, 0,0). Then the particle’s four-momentum transforms as

v =T (H + UBen), (5.14)
Uy = I'(Bsny + Ua), (5.15)
Uy = Uy, (5.16)
Uy = Uy, (5.17)

and the distribution as seen in the lab frame is f(x,u). Particle number is invariant under a Lorentz

transformation,
fxu) dPz dPu = f(%,0) d*T &, (5.18)

therefore the number density, expressed in terms of lab frame quantities, is

f~(~ ~) Y I3ﬁ
:[7 u 5 Y

which follows from conservation of four-volume, 5 d3Z = v d3x. Averaging over particles, the second

term on the right is (Zenitani, 2015)

(

which follows from Eq. (5.14), and because the distribution initialized in the comoving frame (i.e.,

> 01+ B J7)) =T, (5.20)

212

Maxwell-Jiittner) is symmetric, f(u;) = f(—uy). According to Eqs. 5.19 and 5.20, the number
density as viewed in the lab frame is larger, by a factor of I', than that initialized in the comoving

frame. If one naievely initializes particles in the comoving frame, and then boosts momenta to
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convert to the lab frame, a factor of I" (owing to the Lorentz contraction of space) is missed. As an
alternative to contracting cells along the direction of the boost (the PIC code TRISTAN-MP which
we use for our simulations is not designed with this functionality), one may account for this factor
of I' by initializing in the comoving frame a number of particles that is larger than the originally
specified comoving density, n(y), by a factor of I'; this largely accounts for a self-consistent boost
of the distribution function from the comoving frame to the lab frame.?

In our simulations, we choose (in the lab frame) electron and ion number densities ne(y), ni(y),

bulk velocities in the z and z directions vge(y), v4i(y) and v,e(y), v.i(y), and an additional profile

Az (y), which serves to modulate the electron and ion number densities, to satisfy the following

3There is an additional (very important) subtlety to this method of boosting the distribution function via
individual Lorentz transformations of particle four-momenta, which is discussed by Zenitani (2015). In short,
each particle comprising the distribution in the comoving frame may require a different Lorentz transform,
due to their different relative momenta along z; particles with x momentum aligned with the direction of
the boost get a greater Lorentz contraction than those with  momentum anti-aligned to the boost, and
should therefore receive a larger correction to particle number than I') prior to the boost (a correction of T’
would be exact only for particles with %, = 0). Similarly, particles with  momentum anti-aligned to the
boost should get a correction to comoving particle number that is smaller than T'. Zenitani (2015) developed
an algorithm called the flipping method to account for the different corrections required by particles in the
comoving frame, which, during initialization of particles, we apply independently before each boost in the x
and z directions.

4To clarify the meaning of the profile Az(y), we note here a few of its properties: the electron and ion
rlest frame densities are related to the total rest frame density by ne(y) = in(y)(1 + Az (y)) and n;(y) =

5n(y)(1 — Az(y)), respectively; also, the difference between rest-frame electron and ion number densities is

equal to the modulation profile, T.(y) — 7;(y) = Az (y).
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constraints:

Je(y) = 1i(y)vai(y) — ne(y)vee(y), (5.21)

J=(y) = ni(Y)v=(y) — ne(y)vze(y), (5.22)

) = o2

V-E(y) = a(ni(y) — ne(y)), (5.25)
S0+ () = ne)V T~ vae 0P — 020, (5.26)
S0~ A (y)) = mi(y)y/T= v (0)? — vl (521)

Eqs. 5.21-5.27 are arranged so that given values (supposing y is fixed) are on the left, and chosen
valued are on the right (apart from the last two equations, which contain factors of 1 + Az (y) on
the left). The first two constraints Eqgs. 5.21 and 5.22 ensure that current carried by electrons
and ions is consistent with the curl of the magnetic field.> Eqs. 5.23 and 5.24 ensure that the
number densities and velocities of electron and protons match the chosen bulk velocity profiles in
x and z (there is no current in y, so there is no need to consider the motion of particles along y).
The constraint Eq. 5.25 ensures that the electron and proton number densities are consistent with
Gauss’s law. The last two constraints Eqs. 5.26 and 5.27 enforce that the lab frame electron and ion
number densities are consistent with the density profile in the comoving frame. Eqs. 5.21-5.27 may
be solved to obtain explicit expressions for the seven unknown profiles ne(y), ni(y), vee(y), vz (y),
V2e(Y), v2i(y), and Az(y), which we use as an initial condition in our simulations.

With the electron and proton number densities n(y) and n;(y)® specified according to the solu-

5In TRISTAN-MP, there is a convention that currents are defined as the negative of physical currents
defined here, which we account for in our implementation.
6Equivalently: the comoving densities 7i¢j(y) = ne(y)/Te(y) and 75(y) = ni(y)/Ti(y), where Ts(y) =
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tion of Egs. 5.21-5.27, we compute the temperature profile in the comoving frame. The temperature
profile must satisfy pressure balance in the lab frame, i.e. T4 = const.; here, T} is the yy compo-
nent of the total stress-energy tensor (including both particle and electromagnetic stress-energy),

1 e 2111 v
Tior = Ty + Tem, and

Téﬁl /mf x,u) utu” —u (5.28)
1
T = pHepv Zg‘“’FaﬁFaﬁ. (5.29)

Here, u* is the particle four-momentum, g** = diag(—1, 1, 1,1) is the metric tensor, and F*" is the
electromagnetic tensor; for practical calculations, it is useful to write Egs. 5.28 and 5.29 in explicit

matrix form,

mny  mnByy  mnfyy  mnfy e Pz Py Pz
mn Bz mnﬁ%')’ mnﬁ:}cﬁgﬂ/ mn BBy Rz Pzx DPzy Pzz
Tprin = 3 — . (5.30)
prtl mnﬁy’Y mnﬁxﬁy'}’ mnﬁ;'y mnﬁyﬁz’)/ Ry Pzy Dyy Dyz
mnﬂﬂ mn By B2y mnﬁyﬁz'y mnﬁg'y 1z DPzz Pyz DPzz
$(B? + E?) B.E, — ByE. —B.E, + B,E. ByE, — B,E,
B.E,— ByE., 3(B?+ E?) — B2 - E2 —-B,B, — E,E, —-B,B, — E,E,
Tem -
—B,E, + B,FE, —-B,B, — E,E, 3(B?+ E?) — B2 — E? —-B,B. — E,E,
ByE, — B,E, —B,B, — E,F, —~B,B, — E,E, 1(B*+ E?) - B? - E?

(5.31)
In Eq. 5.30, the sum is taken over all particles in the volume under consideration; e is the total

energy density, 72; are momentum densities, and p;; are pressures and shears. For the jet problem

1/4/1 = v5(y)2 — v25(y)2, s € {e, i}, is the local bulk Lorentz factor.
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we consider, electrons and protons can have initial bulk velocities in only the & and z directions,
as currents only need to be initialized in the x and z directions (see Egs. 5.10 and 5.12), and the
component of velocity in the y direction is zero (see Eq. 5.5).

Particles are initialized in the comoving frame, and the yy component of particle stress-energy
Tvgﬁ/ﬂ is invariant under a boost in z, (I', =I'8;,0, —I'.); to ensure pressure balance, it is enough

that the sum fgf’tl + T¥Y is constant along y:

Pu(®) + 5 (B + B)?) - By(y)* ~ By(y)? = const. (532

We initialize an isotropic distribution in the comoving frame, therefore p,,/m = n 6, where § = T'/m
is the dimensionless temperature in the comoving frame (7" is temperature). The temperature profile

for both particle species together must satisfy

Tiej (y)mebe (y) + 73y (y)mabh (y) = (const- — %(B (y)* + E(y)*) + By(y)* + Ey(y)2> , (5.33)

which follows from Egs. 5.30 and 5.31, and the constant is solved for by considering pressure balance
in the jet region, where electrons and protons are prescribed temperatures fqo; and o5, respectively.
Noting also that there are no currents or bulk velocities in the jet frame (so neo; = nigj = %ﬁoj), we

solve for the constant:

1._ 1
const. = §noj(m6060j + mibio;) + 538(1 + bJQ) (5.34)
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Combining Egs. 5.33 and 5.34, the temperature profile (of either species) in the comoving frame is

1 1. 1
be(y) = e () (2 0j (Mebeoj + mibloy) + 533(1 + bJQ)
(5.35)
1
= 5 (B@)* + E)*) + By(y)* + Ey(y)2> :
1 1 Lo 2
0i(y) = P (y)ms inoj(megeoj + mifig;) + 530(1 +b;)
J (5.36)

— 5B + B + Byy)? + Ey<y>2>.

5.2.2 Fiducial parameters and numerical choices
The physical parameters we use to specify the initial state of our PIC simulations are the same as
those described in Sec. 4.2.1.2 (see also Tab. 4.1). Here, we restate them briefly.

The parameter [y, is the speed of the wind relative to the jet. The strength of the in-plane
magnetic field on the jet side is set by oy, = B;%o Jwop, where By is the magnitude of the in-plane
magnetic field on the jet side, and wy is the initial enthalpy density in the jet (see Eq. 4.46).
The initial temperature on the jet side is controlled by the ion plasma beta B, = pio/(B2,/2),
which is the ratio of (twice) the ion pressure to the magnetic pressure, computed with the in-plane
component of magnetic field (see Eq. 4.45). For all of the simulations presented here, we consider
an ion to electron mass ratio of unity, m;/me = 1, and equal initial electron and ion temperatures,
Teo = Tio; therefore also the dimensionless temperatures of electrons and ions are equal, .9 = 6
(this is true on both the jet and wind sides individually: 6eo; = 6ioj and Oeow = biow). The out-
of-plane component of magnetic field is controlled by b; = B.oj/Bzo; (Eq. 4.4), and likewise the
strength of the magnetic field in the wind is controlled by by, = B.ow/Byoj (Eq. 4.4) The ratio
of wind-side to jet-side density (in the lab frame) is set by pow/poj = now/noj (in the present

investigation, we limit our focus to the case of equal electron and ion masses, m;/me = 1). Lastly,

195



for 3D simulations, the parameter f = m/k controls the angle of propagation of perturbations. For
the simulations we describe in Sec. 5.3, we typically fix by /bj = 0.1 and pow/poj = 4 (pow is the
initial wind-side density in the rest frame).

In addition to the physical parameters described above, there are several numerical parameters
we choose. We briefly specify the most important of these (see Sec. 3.3 for a comprehensive
discussion). The electron skin depth on the jet side is ¢/wpe; here wpe = ﬁojq? /(Yeojme) is the
plasma frequency, with veo5 = 1 + ueoj/ (ﬁojmec2), where ueq; is the initial electron internal energy
on the jet side. The skin depth, which controls the temporal resolution of the simulation, is resolved

e )-

with 16 cells on the jet side (this corresponds to a timestep Ay = 0.028125 w On the wind
side, where we typically fix the rest-frame density to be a factor of four larger than on the jet
side, the skin depth is 16/ V4 = 8, corresponding to a temporal resolution of 0.05625 w;el. For
numerical stability and to satisfy the Courant condition, we set the speed of light in our simulation
to ¢ = 0.45.

We perform our simulations on a box of size L, x L, =~ 1000 ¢/wpe % 3000 ¢/wpe, which we find is
sufficiently large to yield converged measurements of the growth rates we discuss in Sec.5.3.2 (see
Sec. 5.A for further discussion). The transition width is resolved with Ay = 45 ¢/wpe, which, for
the cases we present in Sec. 5.3.2, has a gradient in the magnetic field gradual enough that kinetic
effects do not cause our initialized fluid equilibrium to be unstable. Lastly, for all cases discussed
here, we consider electron-positron plasma, i.e. the mass ratio m;/me = 1.

We remark on an important difference between the setup of our PIC simulations, and that of
the relativistic MHD simulations discussed in Sec. 4.3.1. Whereas a box-sized perturbation was
initialized in the relativistic MHD simulations, in the PIC simulations we allow perturbations to

grow from thermal noise, and do not initialize a perturbation.”

"We have tested a PIC setup where we do initialize a perturbation, but the wave is quickly saturated by
thermal noise, and the simulation behaves as if no perturbation had been initialized.
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5.3 Results

In this section, we present the results of our PIC simulations of the KH instability in astrophysical
jets. We discuss the time evolution of the instability in Sec. 5.3.1. Next, in Sec. 5.3.2, we present
measurements of the growth rate, and compare with the theoretical predictions (as in Ch. 4, these
are computed according to Eqs. 4.84 and 4.85). Lastly, in Sec. 5.3.3, we use a test case to
investigate the possibility of KH-induced magnetic reconnection.

5.3.1 Time evolution

In Fig. 5.1, we show the time evolution of the KH instability in a simulation with Gg, = 0.8, 0y, =
1, Biz = 0.078,b; = 3, by, = 0.3, and ratio of wind-side to jet-side initial density pow/poj = 6.7 (this
corresponds to a ratio poyw/poj = 4, where poy is the initial density in the rest frame of the wind).
Panels A-D show the number density in units of initial number density (n/ng) for ¢ in the range
27(vaky0) ~1-87(vakzo) ™. Blue corresponds to the (low density and magnetized) jet, whereas red
shows the (high density and weakly magnetized) wind. In panel A, the KH instability is nearing
the end of the linear growth phase. In panels B-D, we see the nonlinear evolution of the jet-wind
system after the KH instability has saturated. In panel D, an inset plot in the upper right shows a
structure in the mixing layer between the jet and wind. Mixing during the nonlinear phase, which
is highlighted here, is suggestive of the possibility for KH-induced reconnection, due to stretching of
magnetic fields within the KH structures at the mixing interface (Liu et al., 1988; Steinberg et al.,
2007; Faganello et al.; 2012); we further explore the question of KH-induced magnetic dissipation
in Sec. 5.3.3.

5.3.2 Instability growth rates

A main focus of this chapter is to compare the theoretically predicted growth rate of the KH
instability, specialized to the case of an astrophysical jet (see Eqs. 4.84 and 4.85), with those

obtained in PIC simulations. Several PIC studies of the KH instability exist in the literature
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Figure 5.1: Time evolution of number density (in units of initial number density on the jet side) for the
jet setup; red shows the wind side and blue shows the jet side.

(Henri et al., 2013; Lee et al., 2015; Shukla et al., 2016), including several which address the KH
instability in astrophysical jets (Alves et al., 2012; Nishikawa et al., 2012; Grismayer et al., 2013;
Alves et al., 2014). From first-principles it is not immediately clear that collisionless PIC simulations
should capture the physics of a fluid instability such as KH. However, one expects that strongly
magnetized plasma may operate as an MHD fluid. Indeed, Henri et al. (2013) demonstrated that,
with regard to measured growth rates of the KH instability, fully-kinetic PIC simulations and
MHD simulations agree in the strongly magnetized limit; they considered guide fields bz~20 in
a conventional KH setup, where by = B.o/Bo. However, the validity of PIC in modeling the
KH instability in moderately, or even weakly, magnetized plasma remains unexplored, and is an
impetus for the present investigation.

The method we use to measure growth rates in PIC simulations is similar to that described in Sec.
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4.3.3. Briefly, we use the growth of Fourier power [0y (ks0)|* as a proxy for growth of the instability,
where |Uy(kg0)|? is the Fourier power in the velocity field v, evaluated at k = (kz0, kyo); kz0 and
kyo here are the wavevectors of the longest wavelength perturbation in x and y, respectively. Note
that in the PIC case (unlike the RMHD simulations described in Sec. 4.3.1), we do not initialize a
perturbation (see Sec. 5.2), so kyo refers simply to the largest-wavelength perturbation in z, rather
than to an initialized perturbation. Before computing the Fourier power [, (kz0)|?, we apply a
Gaussian filter to the field v, which helps reduce noise in [(kz0)|?; the width of the filter is 20%
of the domain size in y, however, we have tested that the measured growth rate of [0y (kyo)[? is
insensitive to the choice of filter width.

In Fig. 5.2, we show the growth of |'6y(k$0)|2 for a simulation with B, = 0.8,0p = 1, Biz =
0.078,b; = 3, by = 0.3, and pow/poj = 4 (this corresponds to the simulation shown in Fig. 5.1). The
red curve shows the growth measured in PIC, and the blue dashed line indicates the predicted rate
of growth (from Egs. 4.84 and 4.85). The PIC growth rate is slightly below the prediction, but
shows adequate agreement. The growth of the instability saturates around t ~ 45(vakyo)~'. The
four vertical dotted lines correspond to the times at which the spatial profiles of number density in
panels A-D of Fig. 5.1 are shown.

Next, in Fig. 5.3 we show a comparison between the predicted growth rate and PIC simulation as
a function of the shear velocity fg,. For the simulations here, 0y, = 1, Biy = 0.078,b; = 3, by = 0.3,
and pow/poj = 4. The blue curve shows the predicted growth rate Im(¢,, ), and the red points
show the growth rates measured in simulations. The error bars indicate uncertainty on the PIC
measurements of the growth rate (see Sec. 5.B for further discussion). The instability has a stable
region for Sy, < 0.35, which is related to in-plane magnetic tension (Chandrasekhar, 1961; Miura
& Pritchett, 1982), and approaches zero also in the relativistic limit (Bodo et al., 2004; Osmanov

et al., 2008). The prediction and the growth rates measured in PIC simulations show agreement.
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Figure 5.2: Time evolution of Fourier power |, (kz0)|?, for the simulation shown in Fig. 5.1; the four
vertical dotted lines from left to right correspond to panels A-D in Fig. 5.1 respectively, indicating the
time at which each density profile is shown. The red curve is smoothed slightly (using a Savitzky & Golay
(1964) filter) for presentation.
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Figure 5.3: Comparison of analytically predicted growth rate (blue line) and PIC simulations (red cir-
cles). Here, 0, =1, Big = 0.078, b; = 3, and by, = 0.3. fsn dependence of the growth rate is shown.

Fig. 5.4 is similar to Fig. 5.3, but here we fix S5, = 0.8 and study the o, dependence of
the instability (the other parameters are the same as before: i, = 0.001,b; = 3,by, = 0.3, and
pow/poj = 4). There is a region of stability for o, <5 x 1072, which as we discussed in Sec. 4.2.4 is
related to the classical criterion for stability, S, < ¢s. Allowing for uncertainties, as indicated by
the errorbars, the PIC simulation in this regime is consistent with stability. Also, above ¢, ~ 0.1,

we find acceptable agreement between the predicted and measured growth rates.
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Figure 5.4: The layout here is similar to that of Fig. 5.3; comparison of analytically predicted growth
rate (blue line) and PIC simulations (red circles). Here, Sgn = 0.8, fip = 0.001, b; = 3, and by, = 0.3. oyy
dependence of the growth rate is shown.

Next, in Fig. 5.5 we show the b; dependence of the growth rate, as measured in PIC, and
compare with theory. The fixed parameters are similar to before: fg, = 0.8, 04, = 1, Biz = 0.078,
and pow/poj = 4; in each case, we set by = bj/10. For b; = 0, the magnetic field on the jet side
is entirely in-plane, whereas for b; — oo, the magnetic field on the jet side points completely out-
of-plane. Since the simulations here are 2D (and thus the perturbations propagate in-plane), the
growing instability is subject to the stabilizing effect of magnetic tension as bj approaches zero, and
this stabilizing effect is removed as b; increases. The growth rate saturates beyond b; ~ 10, because
increasing the guide field further has a negligibly small effect on the in-plane magnetic tension. The
measured and predicted growth rates show adequate agreement.

In Fig. 5.6, we show the (i, dependence of the growth rate and compare with theory. Similar to
before, the fixed parameters are Ss, = 0.8, 04, = 1,b; = 3,by = 0.3, and pow/poj = 4. The shaded
gray region beginning at fi; = Bigmax = 1/(40yw,) = 0.25 lies beyond the maximum possible value
of (i, given that o,, = 1, and thus corresponds to a physically inaccessible part of the parameter

space.® The growth rate is about constant as i, decreases from S, = 0.25 down towards S, = 1073.

8Note, however, that this does not indicate a maximum possible temperature: as Bi; — Biz,max, the
corresponding temperature § — oo; see Sec. 4.A for further details.
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Figure 5.5: The layout is again similar to that of Fig. 5.3; comparison of analytically predicted growth
rate (blue line) and PIC simulations (red circles). Here, 85, = 0.8, 0y = 1, and Bi, = 0.001. The guide
field on the wind side is set by by, /b; = 0.1 in all cases. b; dependence of the growth rate is shown.

The PIC simulations and prediction show adequate agreement.

| —— theory
04t o PIC
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Figure 5.6: Similar to Fig. 5.3; comparison of analytically predicted growth rate (blue line) and PIC
simulations (red circles). Here, fsn = 0.8, 0ye = 1, b = 3, and by, = 0.3. The gray shaded region on the
far right indicates a physically inaccessible range of §i, when o, = 1. §i, dependence of the growth rate
is shown.

For a three-dimensional case, we have tested the dependence of the growth rate on the ratio
f = m/k, which controls the angle of propagation of unstable modes, arctan(f). The comparison
between measurements and predicted growth rates is shown in Fig. 5.7. This case mirrors the 2D

simulation shown in Fig. 5.1 (the physical parameters are the same: Sy, = 0.8,04,; = 1,8z =

0.078,b; = 3,by = 0.3, and pow/poj = 4), but the simulation was performed on a box that is four
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times as small in the x and y dimensions (the length in z is equal to the length in x).

We measured the growth rates of modes with f % 0 analogously to the way we measure the
growth rate of the mode with k = ko in 2D simulations, as described in Sec. 4.3.3. To better
resolve the predicted unstable region in Fig. 5.7 from arctan(f) ~ —49° to arctan(f) ~ 26°, we
considered modes with k& = bkyo. It is interesting to note that the maximum of the growth rate
in Fig. 5.7 is around arctan(f) ~ —15°, which corresponds closely to a wavevector satisfying
k - B = 0 (Chandrasekhar, 1961; Miura & Pritchett, 1982). Below arctan(f) ~ —49° and above
arctan(f) =~ 26°, the magnetic tension of the guide field is evidently strong enough to suppress the

instability entirely. The predicted growth rate agrees with the measurement.
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Figure 5.7: Comparison of analytical growth rate and measured growth rates in PIC, for a 3D simula-
tion. The simulation parameters here are Bs, = 0.8, 0we = 1, Biz = 0.001, b; = 3, and by, = 0.3. Angle-of-
propagation arctan(f) dependence of the growth rate is shown.

In Fig. 5.8, we show the volumetric profile of density (in units of ng;, the initial number density
on the jet side) of the 3D simulation under discussion. The density profile is shown at times
t = 32(vakz0) ! (panel A), and t = 41(vaky0) ™" (panel B); the former is at the tail end of the linear
growth phase, and the latter is during the nonlinear evolution of the instability. Only a fraction of

the box from y = 0c¢/wpe to y = 100 ¢/wpe is shown (the full box extends to y = 750 ¢/wpe). Blue

corresponds to the jet, red to the wind, and white shows the mixing layer between the two. As the
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volumetric profile in panel A shows, we see a large-wavelength mode that appears to be propagating
in the xz plane, slightly obliquely to the x direction (note that according to the prediction shown
in Fig. 5.7, the maximum growth rate of the instability is at arctan(f) ~ —15°). Panel B shows the
density profile during the nonlinear phase, and shows nonuniformity in the z direction, confirming
that the unstable modes have nonzero k,; this suggests that 2D and 3D simulations could give
different results with regard to quantities measured during the nonlinear phase, a well known fact
from studies comparing, e.g., magnetic reconnection in 2D and 3D simulations (Dahlin et al., 2015;
Munoz & Biichner, 2018).

We show in Fig. 5.9 a comparison between the growth of [0, (kz0)|?> as measured in 2D and 3D
(for f = 0) simulations. Red shows the 2D result (this is the same as in Fig. 5.2), green the 3D
result, and the dashed blue line corresponds to the predicted linear growth (an offset has been
added to the green curve to allow for easier comparison of the slopes of the red, dashed blue, and
green curves). The growth rates extracted from the 2D and 3D simulations both show reasonable
agreement with the prediction. We note that the green curve oversaturates the prediction, even
though this simulation has smaller x and y dimensions than the corresponding 2D simulation (this
is contrary to the box-size convergence for 2D simulations that we discuss in Sec. 5.A). It is possible
that this is just a random fluctuation (see Sec. 5.B). A full set of convergence tests in 3D is needed
for a full understanding, which is beyond the scope of this chapter.

5.3.3 Magnetic dissipation

The role of magnetic dissipation in the KH instability is underexplored in the context of astro-
physical jets. Faganello et al. (2008) used hybrid numerical simulations to study KH-induced
reconnection in Earth’s magnetosphere; Fermo et al. (2012) used fully-kinetic PIC to demonstrate
that plasmoids can be generated by the KH instability; many PIC studies have focused on the

KH instability in jets (Alves et al., 2012; Nishikawa et al., 2012; Grismayer et al., 2013; Alves
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Figure 5.8: Volumetric profiles of number density, in units of the initial jet-side density, from 3D simula-
tion with Bsh = 0.8, 0w, = 1, Biz = 0.001, b; = 3, and by, = 0.3. The simulation shown here is the same as
the one presented in Fig. 5.7.

et al., 2014); but the number of studies which have focused on the link between the KH instability
and dissipation of magnetic energy in jets is limited. In this section, we use as a case study a
simulation which shows pronounced jet-wind mixing during the nonlinear phase (the parameters
are fsh = 0.8,00pz = 1,b5 = 3,by = 0.3, By = 0.078, and pow/poj = 4) to explore the possibility of
KH-induced magnetic energy dissipation at the jet-wind interface. The results here are preliminary.

In Fig. 5.10, panel A, we compare the (volume-integrated) time evolution of the energy dissi-

pation measures j| - Ey (red curve) and j - E, (blue curve), both normalized to the initial in-plane
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Figure 5.9: 2D vs. 3D comparison of the growth of Fourier power |0, (kz0)|?. For both simulations, the

parameters are Jg, = 0.8, 0we = 1, Biz = 0.001, b5 = 3, and by, = 0.3. The 2D simulation corresponds to
the one at fi; = 1072 in Fig. 5.6, and the 3D simulation corresponds to the one presented in Figs. 5.8 and
5.7.

magnetic energy in the box, €p,0. The presence of a parallel electric field E is typically under-
stood as an indicator of magnetic reconnection (Schindler & Hesse, 1988; Mozer & Pritchett, 2010;
Makwana et al., 2017), so jj - | can be taken as a proxy for magnetic dissipation associated with
magnetic reconnection. The heating associated with E) is negligible until around ¢ = 50(vakz0) "
over this same range of time (from t = 0(vakz0) ! to t = 50(vakzo) 1), the total volume-integrated
j-E/ep,o is for the most part negative, which simply means that kinetic motion of the plasma
creates electromagnetic fields. However, at late times (t > 75(vaks0) "), the dissipation due to E
and the total dissipation are roughly equal (see the rough overlap between red and blue lines for
t > 75(vake0) 1), which indicates that the total dissipation j-E = j)-Ej+jL-E] is due primarily
to heating associated with the parallel electric field. This is suggestive that reconnection is the
dominant mechanism controlling magnetic dissipation and heating at late times, for this particular
simulation.

Panel B of Fig. 5.10 shows the evolution of transverse magnetic energy Aep, = ep,(t) —ep,(0),

in units of the initial in-plane magnetic energy in the box, ep,9. Comparing with panel A shows that
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indeed, the growth of Aep, occurs during the time when j - E is negative, and that the agreement
between j-E and j - E| at late times occurs after the linear growth of the instability has saturated.

The magnetic energy shows a decrease from t ~ 65(vakz0) " to t ~ 87(vakeo) L.
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Figure 5.10: Time evolution of (A) volume-integrated E) dissipation, in units of initial in-plane magnetic
energy (red line), and volume-integrated total dissipation, also in units of initial in-plane magnetic energy
(blue line); (B) Time evolution of transverse (i.e., in the xy plane; transverse to the out-of-plane guide
field) magnetic energy Acp,. = ep.(t) — g, (0), in units of initial in-plane magnetic energy.

We show in Fig. 5.11, for the same simulation corresponding to Fig. 5.10, the 2D spatial profiles
at time ¢ = 75(vakq0)* of [B x (V x E|)]; (in panel A), E| (panel B), jj (panel C), and j| - E
(panel D). Nonzero [B x (V x E)]. corresponds to regions where plasma does not move with the
(in-plane) E x B/B? velocity, thereby violating the flux-freezing condition, and is thus a prerequisite
for energy dissipation via magnetic reconnection. The quantities j||, £, and j||-E| together indicate

the relative importance of jj and E) with regard to Ej-associated dissipation, j - E.

Focusing on panel A, we see that the quantity [B x (V x E”)] », though noisy, is noticeably nonzero
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(as indicated by white, pink, and blue regions) in certain regions along the mixing interface between
the jet and wind (y ~ £70 ¢/wpe); one such region is displayed in an inset plot on the far right of
panel A (and correspondingly, the same region is shown in an inset plot in panels B-D). In panel B,
we see that there are indeed regions of markedly nonzero Ej (shown by green and yellow), which
is a signature of magnetic reconnection. Comparing panel B, C and D altogether, we can see that
the regions of nonzero j| - E (pink and white regions) are indeed correlated also with nonzero Ej;
there appear to be many more regions with nonzero j, than regions with nonzero E||, so Ej, as
opposed to jj, in a sense limits the dissipation j| - Ej.

In Fig. 5.12, we show (for the same simulation corresponding to Figs. 5.10 and 5.11) the time
evolution of the electron energy spectrum, for electrons initially in the jet; 7; here indicates the
Lorentz factor of these electrons. As the color of the line changes from blue to red, the time
increases from t = 0(vakzo)~! to t = 87(vakwo)~!. The time evolution of the energy spectrum
seems to indicate an overall heating of particles: the peak of the distribution shifts from around
(v — 1) = 1073 to (75 — 1) ~ 2 x 1073, At late times (¢ = 70(vaky0) '), electrons populate the
distribution up to (v; — 1) ~ 10. There is a local maximum in the energy spectrum at (7; — 1) =
2 x 107! and ¢ ~ 75(vakeo) ! (indicated by bright red; this time corresponds to the time at which
spatial profiles in Fig. 5.11 are shown.

For the simulation corresponding to the energy spectrum shown in Fig. 5.12, the initial dimen-
sionless electron temperature of the wind is fs0 =~ 0.1; though the energy spectrum tracks only
electrons initially in the jet region, still the electrons are heated to a temperature that is close to
that of the initial temperature of the wind, which makes it unclear whether there are numerical col-
lisions between the jet and wind particles which contribute to the energization of jet electrons. To
argue against this explanation, we show in Fig. 5.13 the time evolution of the total (i.e., including

particles from the jet, wind, and transition regions) electron energy spectrum, for a simulation in
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Figure 5.11: For a simulation (the same as that presented in Fig. 5.10) with B, = 0.8,04, = 1,b; =

3,bw = 0.3, Bir = 0.078, the 2D spatial profiles at t = 75(vakyo) ™! of: (A) [B x (V x E|)]., which indicates

violation of the frozen-in condition; (B) Magnitude of the parallel electric field F), which is an indicator

of magnetic reconnection; (C) Magnitude of the parallel current density jj; and (D) Ej-associated dissipa-

tion, j - E|, which indicates heating and dissipation associated with a parallel electric field.

which electrons and ions” start initially with the same temperature. The peak of the distribution

starts initially at v — 1 & 0.1, and by ¢ > 100(vakz0) ™', a high-energy tail of electrons develops,

9For this simulation, we consider an electron-positron jet and electron-proton wind, which is a more
realistic model of the jet-wind interface than electron-positron composition throughout; we employ a reduced
mass ratio of m;/me = 5.
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with electron v — 1 reaching up to v — 1 ~ 20, which is larger than the initial dimensionless temper-
ature of either the wind or jet (and for any of the species: electrons, positrons, or protons). This

suggests that the electron energization is indeed physical, and not a result of numerical collisions.

(v; = 1)dN/dy;

yj—1

Figure 5.12: Time evolution of energy spectrum of electrons initially on the jet side. As the curves
progress from blue to red, the time increases from ¢t = 0(vakyo) ™! to t = 87(vakso)~!. The simulation
corresponding to this energy spectrum is the same one presented in Figs. 5.10 and 5.11.
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Figure 5.13: The layout here is similar to that of Fig. 5.12; time evolution of total electron energy spec-
trum (including electrons from the jet, wind, and transition regions). As the curves progress from blue to
red, the time increases from t = 0(vakyo) ™! to t = 145(vakso) ™. For the simulation corresponding to
this energy spectrum, we assume an electron-positron jet and electron-proton wind (we use a reduced mass
ratio of m;/m. = 5), which is more realistic than assuming that both the jet and wind are composed of

electron-positron plasma.
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5.4 Summary

In this chapter, we used fully-kinetic PIC simulations to study the KH instability in jets. We
described a PIC implementation of the jet setup, giving explicit equations that can be used to ensure
fluid equilibrium. We demonstrated that growth rates of the KH instability extracted from PIC
simulations, even for plasma that is only moderately magnetized, show agreement with the growth
rates predicted by MHD theory, thereby justifying study of the KH instability in the context of
collisionless plasmas in astrophysical jets. An important goal of PIC simulation is to study particle
heating and acceleration. In this connection, we presented preliminary results aimed at probing the
connection between the KH instability and magnetic dissipation in jets; our investigation is based
on only one simulation, but the analysis is suggestive that the KH instability can induce magnetic
dissipation in jets, and can cause both particle heating and acceleration into a power-law energy
tail. Further work is necessary to rigorously quantify the role of the KH instability with regard to
magnetic reconnection in jets.

In Ch. 4, we used relativistic MHD simulations to test and validate the analytical dispersion
relation for KH modes in the jet setup; building on the KH investigation of Ch. 4, we extended the
investigation in this chapter to include fully-kinetic particle-in-cell simulations, which allows one
to study the question of magnetic dissipation in collisionless plasma, and to therefore probe the
connection between the KH instability and the fundamental plasma physics process of magnetic
reconnection. While this question has been studied previously by means of hybrid-kinetic simula-
tions, the use of fully-kinetic simulations to study KH-induced reconnection is underexplored. The
present work provides important justification for the use of PIC simulations to study KH-induced
magnetic reconnection, and suggests that the KH instability in jets can energize particles through

dissipated magnetic energy.
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5.A Convergence of measured growth rate with respect to box size

We explored the convergence of our measured growth rates in PIC (see Sec. 5.3.2) with respect
to the simulation box size (keeping fixed the plasma skin depth c/wpe). Increasing the box size
leads to improved spatial resolution of the box-sized perturbation in v, that we use to measure
the dimensionless growth rate Im(¢,, ), so one expects that below a certain threshold in ¢, (the
domain size in cells), simulations will undersaturate the predicted growth, and above the threshold,
the growth rate extracted from simulations should demonstrate convergence. For the box-size
convergence test we discuss here, all dimensions are scaled according to the box width ¢, (including
the box length ¢, and the transition width).

Fig. 5.14 shows the time evolution of |0, (kz0)|? for simulations with domain sizes ¢, in the range
1008-4036 (we fix the parameters Bg, = 0.8, 0y = 1.0, 8 = 1073, b = 3, by, = 0.3, and pow/poj = 4).
The predicted growth is indicated by the dashed black line (in both the main plot and the inset).
The inset plot in the lower right shows the extracted growth rates as a function of box width /.
We find that the measured growth rate converges to Im(¢,,) ~ 0.2 beyond ¢, = 2 x 103. Our
choice of fiducial box size, ¢, ~ 4 x 10° in the simulations discussed in this chapter, is thus safe and
conservative. We note that the growth rates measured in simulations converge to a value that is
smaller than the predicted growth rate, which we expect is controlled partly by the finite transition
width in our simulations (see also Sec. 4.B for discussion of a convergence test, performed with
relativistic MHD simulations, which probes the role of the ratio of transition width to box width
in controlling the measured growth rates).

5.B Estimate of uncertainty using different random initial conditions
For the measured growth rates we present in Sec. 5.3.2, we include error bars on the measurements
which are meant as a notion of the random variation in our measured growth rates, resulting from

different random initial conditions. In Fig. 5.15, we show the time evolution of |, (kyo)[* for
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Figure 5.14: Test of convergence of measured growth rates in PIC with respect to simulation box-size.
For the simulations here, fgn = 0.8, 0z = 1.0, 5 = 1073, b; = 3, and b,, = 0.3.

four simulations (indicated by colored lines) which are identical, except that each was initialized
with a different random seed ‘dseed’ which is used to set initial locations of particles; there is a
fifth simulation (labeled ‘dseed = 123457’, corresponding to the blue line) which uses the same
random seed as the simulation corresponding to the green line (labeled ‘dseed = 123457.pu’), but
is performed with an old and differently structured version of the code, which we treat as a fifth
random seed. The error bars shown with our measurements in Sec. 5.3.2 are computed as the
standard deviation of the slopes measured in these five simulations (we use human judgment to
select the part of the line from which to fit a line and extract the growth rate). The estimated

value of the standard deviation is o ~ 0.047.
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Figure 5.15: Comparison of growth of |0, (k0)|? for four simulations with different random initial con-
ditions (these are indicated in the legend as ‘dseed=123457.pu’, ‘dseed=261195.pw’, ‘dseed=358342.pw’,
and ‘dseed=370150.pu’), along with a fifth simulation, indicated by ‘dseed=123457" in the legend, which
was run with a differently structured version of the code; we treat this last one as having a unique random
seed, like the other four. Together, we use these five simulations to estimate uncertainty on the growth
rates we present in Sec. 5.3.

214



6. Esirkepov current deposition scheme

6.1 Introduction

Numerical noise in particle in cell (PIC) simulations can limit their effectiveness in modeling plasma
phenomena. A number of strategies have been proposed to improve control of numerical heating in
PIC, for example filtering the charge and current densities (Buneman et al., 1993; Spitkovsky, 2005).
Recently, the use of higher-order particle form-factors has been proposed as a different method to
improve energy conservation in PIC simulations, and its effectiveness has been demonstrated with
the 1D electrostatic code SHARP (Shalaby et al., 2017). The utility of higher-order shape functions
in 2D and 3D electromagnetic codes remains under-explored.

In this document, we investigate the use of higher-order shape functions in improving energy
conservation, via the Esirkepov (2001) density decomposition algorithm for current deposition. The
outline is as follows: In Section 6.2, we review the Esirkepov scheme. In Section 6.3, we present
several tests of our code, and check that it is a correct implementation of the Esirkepov algorithm.
In Section 6.4, we compare the performance of the Esirkepov density decomposition with the zigzag
scheme, for the current deposition and particle pusher. We conclude in Section 6.5.

6.2 Esirkepov scheme
In this section, we review briefly the Esirkepov density decomposition scheme for current deposition
(Esirkepov, 2001).

Consider the motion of a quasi-particle on a Cartesian grid from initial position (x,y,z) to
(x + Az,y + Ay, z + Az). The particle motion produces current that is deposited on the grid, as
determined by the continuity equation,
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or written as a finite difference equation,

i,4,k i,5,k G415k iblgk g j+1k g4k 3,5,k+1 +1,7,k+1
Ppi1 — Pn I Jx —J= i Jy —Jy + Jz —J= -0 (6.2)
Ay A, Ay A, ’ )

where the subscript n denotes the timestep, superscripts i, j, k refer to grid coordinates in the
directions z,y, and z; Az, Ay, and A, are grid spacings in the directions z,y, and z, and A; is the
timestep. Since the particle motion is independent in the x,y, and z directions, Eq. 6.2 may be

recast as three separate equations governing current deposition along each direction:

A

jitLd, K _ = jud & A Sy, ok (6.3)

]y,g+1 K j;J,k _ qﬁW;J,k’ (6.4)
p A

]Z,j k1 ]z,j,k A WZJ k (6.5)

where ¢ is the charge of the quasi-particle. Egs. 6.3,6.4, and 6.5 define a vector of weights Wk =

'7‘7k ‘7'7k '7.’k 3 141 sJ s )’ k ), k 2Jy ), k
(WP Wy " W% which are the densities (px]n+1 — /4, (py]n_H — pbd®) /g, and (pzjn_H -

pz’Jnk) /q associated to current deposition along each direction. If the total charge density p®F is

expressed in terms of an arbitrary particle form-factor (or density) Sk,

pi’j7k($ayvz) = qSi’j’k(xayvz)v (66)

then by the continuity equation 6.2, the densities W;;] ’k, Wjj ’k, W;J ok satisfy

Whik 4 WZ’J ko Wik = §4Ik(p 4 Az, y 4 Ay, 2 + Az) — SWF(2,y, 2). (6.7)

To employ the independence of Eqs. 6.3, 6.4, and 6.5, the individual components of W&J:*
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(rather than the sum, as in Eq. 6.7) must be expressed as differences of form-factors S***. The

motion of the quasi-particle can generate 8 possible form-factors,

S(z+ Az, y + Ay, z + Az),
S(x,y+ Ay, z + Az), S(z + Azx,y, z + Az), S(x + Az, y + Ay, 2),

(6.8)
S(z,y,z + Az),S(x,y + Ay, 2), S(x + Az, y, 2),

S(x7 y? Z)?

so in general, the components of W may be written as linear sums of these factors. W may in fact
be expressed as a unique linear combination of the functions above, if the following properties of
W are enforced (Esirkepov, 2001):

1. The sum of weights W,, Wy, W is equal to the difference of form-factors (Eq. 6.7).

2. If the shift in any direction is zero, the corresponding weight is zero, i.e.

Ar =0 < W, =0, (6.9)
Ay=0 < W, =0, (6.10)
Az=0 <= W, =0. (6.11)

3. Symmetry with respect to permutation of coordinates:

S(x,y,2) =Sy, x,2) and Ax = Ay <= W, =W, (6.12)
S(z,y,2) = S(x,2z,y) and Ay = Az <—= W, =W, (6.13)
S(z,y,z) = S(z,y,x) and Ax = Az <— W, =W,. (6.14)

Esirkepov was able to formulate and solve this problem. The unique solution for W,, W,, W,
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subject to the above constraints is (Esirkepov, 2001):

1
W, ==S(x+ Az,y+ Ay, z + Az) — SS(:L‘,y—I—Ay,z+Az)

1
+ =S(x + Azx,y,z + Az) — 6S(:z;,y,z+ Az)

(6.15)

1
+ S+ Ary + Ay, z) — 2S(w,y + Ay, 2)

+ S(-ﬁ-FA.%’,y, Z) - %S(m,y,z),

5

S(x + Az, y-l—Ay?z—FAz)—fS(ﬂz-l-A:c Y,z + Az)

1

(6.16)

1
+ =Sz + Az, y + Ay, z) — ES(x—i-Ax,y,z)

1
+ S(:B+Ax,y,z) - 7S($7yvz)v

§
Wl = O o.::\r—t Wl = O oo\r—\ Wl o= O = w\»—n

S(z + Az, y+Ay,z+Az)—§S(:ﬁ+Aa} y+ Ay, 2)

1
+=S(z,y+ Ay, z + Az) — ES(x,y—i-Ay,z)

(6.17)

1
+ =Sz + Az,y,z + Az) — ES(x—i—A:L‘,y,z)

+ -S(z,y,z + Az) — %S(m,y,z).

In a two dimensional problem, Egs. 6.15, 6.16, and 6.17 admit a simplified form (Esirkepov, 2001),

w2 = Sm@+Axy+Aw—f§ny+Aw

(6.18)
+ 752]3(1}, + vay) - 752D($7y)7
WP = Sm@+Axy+Aw—f§Wx+Ax%z+A@
(6.19)
+ 75’2D(ajvy + Ay) - 752D(l’7y)>
1
Wb = SQD(QH- Az, y+ Ay) + ESQD(:C,y—i-Ay)
(6.20)

+ 652]3(93 + Az, y) + §S2D($7y)'
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Note that in the 2D case, translational invariance in the z direction is assumed, so that j2” kL _ g7 ok

vanishes. In this case, Egs. 6.3, 6.4, and 6.5 reduce to

Ay

it ld = g qEWgD)M’ (6.21)

gl _ g o B yp(eD)i (6.22)

gy 3 = am Wy, :
i = qu WD), (6.23)

where v, is the velocity of the quasi-particle in the z direction. In the 2D case, current deposited in
the z direction is computed as a weighted average of the charge flux, over the initial position (x,y),
two intermediate positions (x + Az, y) and (x,y+ Ay), and the final position (z + Az, y+ Ay); see
Eq. 6.20. Additional details of the derivation are provided in Appendix 6.A.

One advantage of the Esirkepov scheme is that it allows for the straightforward implementation
of different particle form-factors, which enter through the definition of weights, Egs. 6.15, 6.16,
and 6.17 (or in 2D, Egs. 6.18, 6.19, and 6.20). In particular, higher-order shape functions may be
implemented with ease, which is suggested as a method of controlling numerical heating in PIC
simulations (Shalaby et al., 2017).

In the remaining sections, we investigate the effect of higher-order shape functions in a few test
problems, and compare to another commonly used charge-conserving method of current deposition,
the zigzag scheme (Umeda et al., 2003). To study the higher-order form-factors and compare with
the zigzag algorithm, we use an implementation of the Esirkepov density decomposition in the
electromagnetic PIC code TRISTAN-MP (Buneman et al., 1993; Spitkovsky, 2005). Details of the
implementation are included in App. C.

We focus on shape functions of order 1, 2, and 3, which are defined as follows.! Starting with

!These definitions are for 1D shape functions. Note that the form-factors in Egs. 6.18, 6.19, 6.20, 6.15,
6.16, and 6.17 are 2D and 3D shape functions. The relation between 1D and 2D is: S?P(z,y) = S*P(2)S'P(y),
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the zeroth-order shape function,

1

SO(x) =

0

if |x|< %,

otherwise,

shape functions of higher order are defined via recursion:

57 (z) = / Sz — )S"(y)dy.

The first few shape functions have the explicit forms

¢

r+1
Sl(x): 1—=2
0
%(2m+3)2
S*(x) =
$(3 —2x)?
0

for example (and similarly for 3D).

if —1<z<0,

ifo0<ax<l,

otherwise,

otherwise.
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(6.24)

(6.25)

(6.26)

(6.27)



Hz+2)3 if —2<z<-1,

14-322(x+2) if —1<z<0,
3
§°(x) = B —2)2r+4) if0<z <1, (6.28)
—t(z—2)3 if1<z<2,
0 otherwise.

The shape functions Eqgs. 6.24, 6.26, 6.27, and 6.28 are plotted in Fig. 6.1.

1.01 — 0 order
15t order

0.81 —— 2" order
—— 3" order

0.6 /\

0.4 4

0.2 1

0.0

-20 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
XDy

Figure 6.1: Particle form-factors of order 0, 1, 2, and 3.

6.3 Tests

In this section, we present a few test cases (heating and energy non-conservation in a single-
temperature plasma; filamentation instability; numerical Cherenkov instability) to demonstrate
the effect of higher-order shape functions in an electromagnetic PIC code. In each test problem, we
compare the zigzag current deposit scheme, as well as the Esirkepov density decomposition scheme
for 15,274 and 34 order shape functions. We note that the zigzag scheme of Umeda et. al, which
assumes a 15 order particle shape function, still differs from the 15 order Esirkepov density decom-

position scheme in the assumed motion of the particle (Umeda et al., 2003). In the zigzag method,
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particles may travel along trajectories that resemble a zigzag pattern, whereas in the Esirkepov
density decomposition, particle trajectories are treated as straight lines.

For all of the test problems presented here, the initial magnetic field is zero.
6.3.1 Numerical heating in a uniform plasma
Here, we investigate the effect of different current deposit schemes on numerical heating in a uni-
form plasma initialized at rest. The ion and electron masses are equal, m = m; = m,, and the
plasma is single-temperature, 17} = 1, = T. Each simulation is initialized with a different choice of
dimensionless temperature,

kT

0= —.
mc2

(6.29)

To avoid severe heating associated with the Finite Grid instability, we study plasmas with tem-
perature less than the numerical Debye temperature, § < 0p (Birdsall & Maron, 1980; Birdsall &

Langdon, 1991); this is the temperature at which the Debye length

[ EpT
A\n = 6.30
b 4mnge? (6.30)

is equal to the grid spacing, A, = Ay = A, = A; here, ng is number density and e is electric charge.

With A\p = A, the dimensionless Debye temperature can be written

o= (.; )2, (6.31)

c/wp
where c/wy, is the plasma skin depth, and the plasma frequency is

4mnge?

(6.32)

Wy =
P m
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The violent numerical heating associated with the Finite Grid Instability is strongest at 6 = 0p,
and its effect is mitigated at temperatures above or below 0p (Birdsall & Maron, 1980). In the
simulations presented here, we use 10 cells per electron skin depth, so that the numerical Debye
temperature is fp = 1072. We study numerical heating in plasmas with initial dimensionless
temperatures 6y = 107°,1074, and 1073. Plasma with temperature 6 is initialized according to a

Maxwell-Jiittner distribution,

Far(1,0) o< v(72 = 1) L exp (—7/6) , (6.33)

where « is the particle Lorentz factor and d is the number of dimensions; for the simulations in this
section, d = 3. The plasma is initialized in a box of dimension L, = 15¢/wyp, Ly = 30¢/wp, L, =
15¢/wp. The simulation domain is periodic in z,y, and z. The number of particles per cell is
Nppe = 64.

In Fig. 6.2, we demonstrate the effect of different current deposit schemes on numerical heating
in a uniform plasma. Columns 1, 2, 3, and 4 correspond to zigzag, 15¢ order, 2°¢ order, and 3"
order density decomposition, respectively. Panels (a) — (d) show the evolution of dimensionless
temperature 6 as a function of dimensionless time, twy,. Panels (e) — (h) show the fractional error in
mean particle Lorentz factor relative to the initial mean value (v9) — 1, i.e. ({v) — (70))/({70) — 1);
here, v0 = 1 + 6p/(Taq(6p) — 1), where the adiabatic index T',q is a function of dimensionless
temperature 6.

In an ideal simulation, the fractional error should remain zero, but due to numerical heating,
the fractional error increases. The zigzag scheme and 15 order density decomposition have similar
values for the fractional error over the runtime of the simulations (which is roughly tw, = 8 x 103).

By using a higher-order particle shape, as in panels (g) and (h), the fractional error induced by
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numerical heating is decreased; for example, with a 34 order shape function, the fractional error

is reduced by about 1.5 orders of magnitude, relative to zigzag or 1¢ order density decomposition.

zigzag 15t order 2" order 3" order
[d]

[a]

| e

m ) // //
107* 5 —— =105
—— Bp=10""

1075 + —— 6p=10"3

Al
|

102
Lot | le] [f] [g] [h]

100 4
|

=)

:g 10-1 4

1072 o

(y)

1073 4 T T T T T T T T T T T T T T T
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6
wpt x103 wpt x103 wpt x103 wpt x103

Figure 6.2: ((a) — (d)) Evolution of dimensionless temperature and ((e) — (h)) fractional error in a uni-
form plasma with initial dimensionless temperatures 6y = 107°,107%, and 103, for zigzag, 1°¢,2"9, and
3'4 order Esirkepov (columns 1 — 4, respectively). The simulations presented here are in full 3D.

Numerical heating in the 2D case is similar to that of the 3D case discussed here; see Appendix
6.B.

An alternate method that allows for improved control of numerical heating is the application of
a filter to smooth the charge and current densities (Buneman et al., 1993; Spitkovsky, 2005). One
such implementation is to, at each timestep and in each direction, redistribute the value of the
current density at a grid point into neighboring cells, according to prescribed weights; a commonly
used choice of weights is 1-2-1. By repeated application of such a filter, the current density is
smoothed, which improves energy conservation in the PIC simulation.

How does the effect of such a filter on numerical heating compare with that of a higher-order
shape function? We can get a rough idea by repeated convolution of a 1-2-1 filter on a square-
shaped quasi-particle of width A, equal to the grid spacing; we consider applying the filter a
total number of times nmes. After each application of the filter, the width of the particle at half

maximum can be measured, yielding a correspondence between nimes and the particle full width at
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half maximum (fwhm). Alternatively, based on the definition of particle shape function Eqgs. 6.24,
6.25, the fwhm can be computed as a function of the order of the particle shape. To demonstrate
the rough correspondence between nijmes and order of shape function, with respect to the effective

fwhm of the quasi-particle, we show in Fig. 6.3 (b) a plot of ntjmes vs. fwhm and order vs. fwhm.

0.49

The fwhm scales roughly as the square root of ngimes, fwhm/A o< ngi =

and the scaling with order
of the particle shape is slightly weaker, fwhm/A o order’#”. This comparison shows that repeated
convolution of a 1-2-1 filter and higher-order shape functions both increase the effective fwhm of
the quasi-particle, so both methods should result in improved control of numerical heating.

While intuitive, this comparison is a simplified picture of the two methods, and cannot capture
the full details of a PIC simulation. To demonstrate a more robust comparison of the filter smooth-
ing and higher-order shape function, we show in Fig. 6.3 (a) the time evolution of fractional error
in a plasma with initial temperature 6y = 10~%, for simulations with 15% order shape function and
Ntimes = 1,3, 5, and a simulation with a 3rd order shape function, but ngmes = 0. In this case,
we find a close equivalence, in terms of evolution of fractional error, for the simulation with a 15t
order shape function, ntjmes = 5, and 3rd order shape function, ntmes = 0. With respect to frac-
tional error, the scalings shown in Fig. 6.3 (b) predict an equivalence between a 3¢ order shape
function, and ngmes =~ 2, which differs from the empirically measured equivalence between 3rd
order shape, and nimes &~ 5, shown in panel (a); the simplified picture which leads to the scalings
fwhm/A oc 249 “and fwhm/A order’47 is probably insufficient to capture the full details of the

PIC implementation.
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Figure 6.3: (a) For 2D simulations with §; = 10~%, comparison of fractional error for 15¢ order form-

factor and nimes = 1,3, 5 (solid lines) vs. 3™ order shape and ngimes = 0 (dashed); (b) nimes vs. effective
fwhm (blue) and order of particle shape vs. effective fwhm (dark red).

6.3.2 Filamentation instability

For the next test, we consider a counterstreaming beam. The beam is aligned with the x direction.
We choose equal densities for the beam and background plasma, and consider two cases, one where
the beam Lorentz factor 4y is nonrelativistic (vp/c = 0.5 — 1, ~ 1.15), and a second with a
relativistic beam (vp/c = 0.95 — 71, &~ 3.20). Given the initial anisotropy of this setup, plasma
instabilities will grow to drive the particle distribution function towards isotropy. Here, we consider
the growth of the perpendicular mode, known as the filamentation instability, which is the fastest

growing mode for symmetric beams. It has a maximum growth rate (Bret, 2012)

Ub
5max,th = ?wlih (634)
where wy, is the plasma frequency, with mass rescaled by v, wp, = \/4mnge?/(ym), and ng is the
total number density of positrons and electrons.
For the 3D simulations presented here, we use a periodic box whose dimensions are L, = L, =
L, =12.6 ¢/wp, with ¢/w, = 10 cells. In the nonrelativistic case, the box length is about equal to

the wavelength of the unstable mode; however, we have checked that our results agree with those
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obtained with a box that is three times as large in the perpendicular (z) direction. The initial
dimensionless temperature of the plasma is y = 2 x 107°, and we use Nppe = 64 particles per cell.
For 2D simulations, we use the same choice of numerical parameters, except for the box size which
is Ly = Ly = 12.8¢/wp.

In Fig. 6.4, we show evolution of (2x)perpendicular magnetic energy (|B.|?)/(4mnmc?), where
angle brackets denote a spatial average over the simulation domain, which is 3D. Panels (a) and
(b) show the growth rates for the nonrelativistic and relativistic cases, respectively. The measured
growth rate is presented for zigzag, as well as Esirkepov’s scheme with 1%¢,2° and 39 order
shape functions. The measured growth rates are compared with the analytical growth rate, Eq.
6.34. In the relativistic case, the different current deposit schemes show acceptable agreement
with the predicted maximum growth rate of the unstable mode. In the nonrelativistic case, the
density decomposition with 2"d and 3'¥ order shape functions show reasonable agreement with the
analytical prediction, however, the zigzag and density decomposition with 15¢ order shape function
do not show a close agreement to the prediction. In these cases, however, the agreement improves
with increased number of particles per cell Ny, which is another way to control numerical heating,
apart from the filtering and higher-order shape functions discussed in Section 6.3.1. For the zigzag
scheme, we find improved agreement with the analytical prediction when the number of particles
per cell is increased; we have tested with Npp. = 512. The disagreement between the analytical
prediction, as compared to zigzag and 15 order density decomposition, is likely linked to numerical
heating at early times which distorts the measured growth rate, rather than an intrinsic limitation of
1%t order shape functions in capturing the physics of the filamentation instability. The agreement
between the analytically predicted maximum growth rate (Eq. 6.34) and the measured growth
rates in Fig. 6.4 supports that our implementation of the Esirkepov scheme is valid, as it correctly

captures the physics necessary to model the filamentation instability.
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In Figs. 6.5 and 6.6, we show spatial profiles of (2x)magnetic energy, B, and density normalized
to initial density ng, for 2D simulations with nonrelativistic and relativistic beams, respectively.
The first, second, third, and fourth columns correspond to different schemes for current deposition:
zigzag, 15¢, 27 and 3'9 order density decomposition. In each figure, the spatial profiles are shown
close to the saturation of the instability; for the nonrelativistic case, this is around tw, ~ 22.73,
and for the relativistic case, tw, ~ 16.88. In each case, nonrelativistic and relativistic, the four
simulations start with the same initial conditions, so any slight differences in the spatial profiles

are caused by the different current deposition algorithms employed in each of the four cases.
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Figure 6.4: Time evolution of perpendicular magnetic energy for (a) nonrelativistic and (b) relativis-
tic counterstreaming beam, for zigzag, 15, 2", and 3'4 order Esirkepov. Solid lines show the measured

growth rates, and dashed lines show the analytical prediction (see Eq. 6.34). The simulations here are 3D.
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Figure 6.5: For the nonrelativistic counterstreaming setup (y, & 1.15): 2D spatial profiles of magnetic
energy (first row), z component of magnetic field (second row), and density in units of initial density
(third row), for 15¢,224 and 3¢ order Esirkepov (columns 1 — 4). The spatial profiles are from 2D simu-
lations at twy, ~ 22.73, which is near saturation of the growth of the unstable mode. The spatial profiles
shown here are from 2D simulations.
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Figure 6.6: Similar to Fig. 6.5, but for the relativistic counterstreaming setup (v, & 3.20): 2D spatial
profiles of magnetic energy (first row), z component of magnetic field (second row), and density in units
of initial density (third row), for 15,274 and 3¢ order Esirkepov (columns 1 — 4). The spatial profiles are
from 2D simulations at tw, ~ 16.88, which is near saturation of the growth of the unstable mode. The
spatial profiles shown here are again from 2D simulations.

6.3.3 Numerical Cherenkov instability
Numerical dispersion in relativistic plasma flows generates a nonphysical numerical instability,
known as the numerical Cherenkov instability (Godfrey, 1974). Here, we investigate the effect of
different current deposition schemes on the growth of the numerical Cherenkov instability. The
simulations presented here are similar to the 2D simulations described in Section 6.3.2, however we
use a single beam streaming in the +x direction, with Lorentz factor v, ~ 22.37, and Npp. = 16.
Again, the plasma is electron-positron with initial dimensionless temperature 6y = 2 x 1075,

In Fig. 6.7, we show the growth of (2x)perpendicular magnetic energy (| B,|?)/(4mnmc?), for

the current deposit schemes zigzag, 15¢, 2", and 3" order Esirkepov. The growth of the instability

230



is shown with respect to dimensionless time twy,, with the plasma frequency defined as in Section
6.3.2. The solid lines show the measured growth of the instability, whereas dashed lines show fits
proportional to exp(dmaxt), used to extract the maximum growth rate in each case. The growth
rate of the instability is reduced by use of higher-order shape functions; the maximum growth rate
for the simulation which uses a 3" order form-factor is a factor of two smaller than in the 15 order
Esirkepov simulation. Compared to the simulation with zigzag current deposit, the simulation

which uses a 3" order form-factor has a maximum growth rate that is a factor of four smaller.

yd
E 107 / / / . — zigzag
N ‘ ; 7 1%t order
o ‘ / e —— 2" order
2107 / —— 3" order
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10-5 4 max/Wp = 0.606
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Smax/wp = 0.311
o L L
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Figure 6.7: Time evolution of perpendicular magnetic energy for zigzag, 15,24 and 3¢ order Esirkepov
(solid lines), and measured maximum growth rates (dashed). These simulations are 2D.

In Fig. 6.8, we show the k-space profiles of the Fourier power spectrum |§Z(k:x c/wp, ky c/wp)|?,
in the first row, and the spatial profile of density, in units of initial density, in the second row.
Columns 1-4 correspond to zigzag, 1%%, 24 and 34 order Esirkepov schemes. For each current
deposit scheme, the spatial profiles are shown at a snapshot in time near the end of the exponential
growth phase of the numerical Cherenkov instability (tw, &~ 20, 40,50, and 70 for zigzag, 1%, ond
and 3'¥ order Esirkepov, respectively; see Fig. 6.7). The density plots show a streak pattern that
is characteristic of the numerical Cherenkov instability. Profiles of the Fourier power spectrum also

show a signature of the excited Cherenkov modes. The unstable wave numbers are regulated by
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the equation (Ikeya & Matsumoto, 2015)

A, 5 ( Bokzcl; A (kA \ 2
:l:cAt\/tan < 5 ) (ch sm( 5 , (6.35)

where A, is the simulation timestep and (}, = vy, /¢, the dimensionless velocity of the beam. In our

kyA, = 2 arcsin

simulations, A, = A,. The locus of wavenumbers k, k, satisfying the condition Eq. 6.35 is shown
by dashed red curves in the first row of Fig. 6.8. The agreement between wavenumbers predicted to
be unstable due to the numerical Cherenkov instability (Eq. 6.35) and the distribution of Fourier
power in k-space, shown in the first row of Fig. 6.8, demonstrates that the density waves present

in the second row of Fig. 6.8 indeed correspond to numerical Cherenkov modes.
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Figure 6.8: For a 2D, relativistic single beam simulation (v, = 22.7): k-space profiles of the Fourier
power spectrum | B, (k, ¢/w,, ky c/wy)|? (first row), and spatial profiles of density in units of initial density
(second row), for zigzag, 1°¢,2%4 and 3'¢ order Esirkepov (columns 1 — 4). Dashed red lines in the first
row show kg, k, satisfying Eq. 6.35. For each case, the k-space and spatial profiles are shown near satu-

ration of the Numerical Cherenkov instability; the simulations here are the same as those shown in Fig.
6.7.
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6.4 Performance
In this section, we compare the performance of our implementation of zigzag, 15, 2"4, and 3'¢ order
density decomposition for the current deposit step of the PIC loop.

In Fig. 6.9, we show the average CPU time per step for the current deposit as a function of Ny,
for 2D and 3D (panels (a) and (b), respectively). The zigzag and 15 order Esirkepov schemes show
similar performance in 2D, but the zigzag implementation is fastest in 3D, by roughly a factor of
6.5 for the current deposit, and 3.2 for the particle push. For 3D, the average time of the current
deposit step, when using a 3" order shape function, is nearly an order of magnitude larger than
the time required by zigzag. The number of operations needed during the current deposit step,
when using the Esirkepov method, scales with both the number of particles and the number of
array elements over which the 1D particle shape has support (we can call the latter N, LD ). The

shape

average CPU time should scale roughly as (Nppe X Nsl}gpe)2 in 2D, and (Nppe X ]\Tslﬁgpe)3 in 3D. The
dependence on the dimension of the simulation at least partly explains why, for fixed Nppc, the
difference in CPU time between the 3' and 1%% order schemes is greater in 3D than in 2D (see by

comparing panels (a) and (b)).

Current deposit
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Figure 6.9: For current deposit, the mean CPU time per step, as a function of particles per cell for (a)
2D and (b) 3D.

233



Fig. 6.10 is similar to Fig. 6.9, but here we compare the performance of the particle pusher for
the different implementations. The performance of each scheme can differ, depending on how the
electromagnetic fields are interpolated to the location of a particle. For zigzag, we compute field
values via a linear interpolation from Yee (1966) lattice points (see Fig. 6.11) to gridpoints, then

gridpoints to particle location; the procedure is described in detail in Cai et al. (2003).

Particle push
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Figure 6.10: For particle push, the mean CPU time per step, as a function of particles per cell for (a) 2D
and (b) 3D. This is similar to Fig. 6.9.

For the 1%, 274 and 3" order schemes, the field value at a particle location F(z,y, z) is computed

as a sum over the product of the particle shape and field, over cells where the form-factor is nonzero:?

F(z,y,2) = F(ins jn, kn)SEP (i) SEP (5,) SIP (k). 6.36
x Yy z

2.

n|S3P (in,jin kn )70

Here, iy, jn, and k, denote the cell location. The fields at location F'(iy, jn, kn) can be computed
via linear interpolation of the fields defined on the Yee (1966) lattice. As an example, consider
the case F' = E,; on the Yee lattice, the x component of the electric field is defined at points

staggered (with respect to the primal grid) by half a cell, (i, + A/2, jn, kyn). To interpolate from

2The field interpolation in 2D is analogous; homogeneity is assumed in the z direciton, so F(z,y, z) =
F(ac,y) = Zn\SQD(i",j");&o F(in’jn)S;D (Zn)S;D(.]n)
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Yee lattice gridpoints to midpoints (thereby obtaining the first term on the righthand side of Eq.

6.36), Ey(in,jn,kn) is computed from two surrounding points as

Ex(invj’m kn) = [Eac(zn + A/Qa.j’m kn) + Ex(ln - A/2aj7’b7 kn)] ) (637)

N

and the other EM field components are computed similarly. With the EM fields computed at
the same grid points over which the particle shape function is defined, Eq. 6.36 yields the field
components at the particle location, and allows for calculation of the force on a particle.

From Eq. 6.36, the particle push step depends on (N 1D)?’ in 3D, and is also proportional to
(Nppe)?, so the required time should scale as (Nppe X Nsl}gpe)?’ (or in 2D, (Nppe X Nsllgpe)Q), as
in the current deposit step. Comparing panels (a) in Figs. 6.9 and 6.10, and also panels (b),
the current deposit and particle push steps show similar scalings with Ny, for each scheme. The

current deposit and particle push steps in 3D show some differences for zigzag and 1st order density

decomposition.

z
A
(4,4,k+1)
A
AEZ By
By » Az
—ep-
(i7ja k) 'E?J V(iaj_’_lak)
> R
7 1B, A, Y
(i+1,5,k) == —V ¥
< Ay —>
x

Figure 6.11: Diagram of Yee lattice. £, E,, and E, are defined at edge midpoints; B,, By, and B, are
defined at face centers.
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6.5 Summary

In this chapter, we investigated the use of higher-order shape functions in PIC simulations, by
use of the Esirkepov density decomposition scheme for current deposition, and compared with the
zigzag scheme. We show that higher-order shape functions offer increased control with respect to
numerical heating, and that a smoothing filter can offer similar improvements. We demonstrate
the correctness of our implementation by comparing the analytical growth rate of the filamentation
instability to the measured growth rate in simulations. For a relativistic plasma, we demonstrate
that the use of higher-order shape functions offers some reduction in the growth rate of the numerical
Cherenkov instability. Last, we assess the performance of our implementation of the Esirkepov
density decomposition scheme, and compare with zigzag, for the current deposit and particle push
steps of the PIC loop, in both 2D and 3D; the 15 order density decomposition shows similar
performance to zigzag for the current deposit and particle push steps in 2D; in 3D, zigzag current
deposit is fastest, and at low Nppc, its associated particle push implementation is faster than that
of the 1% order Esirkepov scheme.

6.A Esirkepov coefficients

Here, we elaborate on the derivation of numerical coefficients which relate densities W,, W, and
W, to form-factors (i.e., the coefficients in Eqgs. 6.15, 6.16, and 6.17). To shorten notation, define
a vector of the possible form-factors generated by particle motion in 3D on a Cartesian grid, Eq.

6.8,

v =[S(x+ Az,y+ Ay, z + Az),
S(z,y+ Ay, z + Az),S(x + Az,y, z + Az), S(z + Az, y + Ay, 2),
(6.38)
S(x,y,z+ Az),S(x,y + Ay, 2)S(x + Az, y, 2),

S(x,y, 2)].

236



We assume that the densities W, Wy, and W, are linear combinations of the functions Eq. 6.8,

8
Wz, y, 2, Az, Ay, Az) = Z a'v', (6.39)
i=1
8 . .
Wy(x,y, 2, Az, Ay, Az) = Z b"v', (6.40)
i=1
8 . .
W, (z,y, z, Az, Ay, Az) = Z " (6.41)
i=1

Here, we consider the weights to have six arguments, corresponding to the particle position (x,y, z)

for the first three, and the shift (Az, Ay, Az) for the last three; with this notation,

Wiz + Az,y,2) = Wi(z,y,z,Az,0,0), (6.42)

for example. Our task is to determine the coefficients a’, b’, ¢, subject to the constraints (1, 2, and
3) on W listed in Section 6.2. We translate the three constraints into a system of equations which
uniquely determines the 24 coefficients a’, b*, and ¢'.

The first constraint we consider, item 1, can be understood as enforcing that the weights W, W,
and W, satisfy the continuity equation (Eq. 6.2). Inserting the definitions 6.39, 6.40, and 6.41 into

Eq. 6.7, we obtain

8
(@ + 6+ =S+ Az, y+ Ay, 2 + Az) — S(2,y, 2). (6.43)
i=1

The next property of W, item 2, ensures that if the particle shift in a direction is zero, then no

current is deposited along that direction. This allows us to set Az, Ay, and Az each to zero in Eq.
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6.43 to get three sets of constraints,

Wa(x,y, 2, Az, Ay,0) + Wy (z,y, 2, Az, Ay,0) = S(z + Az,y + Ay, z) — S(z,y, 2), (6.44)

Wiz, y, 2z, Ax,0,Az) + W,(x,y, z, Ax,0,Az) = S(z + Az,y,z + Az) — S(x,y, 2), (6.45)

Wy(xv Y, =z, 07 Ay? AZ) + WZ(I', Y, z, 07 A$, Az) = S(x7 Y+ Ayv z+ AZ) - S(.%', Y, Z)? (646)
or
8 . . 8 . .
Z a'v'|a,_o + Z bV | aeg = S + Az, y + Ay, 2) — S(x,y, 2), (6.47)
i=1 i=1
8 . . 8 . .
Z a'v'|ay—o + Z V' py—o = S(@ + Az, y, 2 + Az) — S(2,y,2), (6.48)
i=1 i=1
8 . . 8 . .
D b ppmg+ YV agg = Sy + Ay, 2+ Az) — S(a,y, 2). (6.49)

i=1 =1

Additionally, we have

We(z,y, 2z, Az, Ay,0) =0, (6.50)
Wiz, y, 2z, Az,0,Az) =0, (6.51)
Wy(z,y, 2,0, Ay, Az) =0, (6.52)
which yields 12 constraints,
at = —a%,a® = —a*,d® = -8, d" = —db, (6.53)
bt = 2,03 = b4 0% = —5, b7 = —b8, (6.54)
t=—3=-c P =-cb " =-c8 (6.55)
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Lastly, we consider the symmetry constraint, item 3. Suppose that the form-factors are invariant
with respect to permutation of coordinates, and shifts are identical: Az = Ay = Az = A. Then,
for example, S(z,y + A, z) = S(y+ A, x, z). Moreover, invariance with respect to permutations of

(z,v), (y,2), and (x, z) yield, respectively, the equations

Walz,y, 2, 0, A, A) — Wy(x,y, 2, A, A, A) =0, (6.56)
Wy(z,y, 2, A, A, A) = W (z,y,2,A,A,A) =0, (6.57)
Wz, y, 2, A, A A) = W2y, 2, A, A,A) =0, (6.58)

or, inserting Eqgs. 6.39, 6.40, and 6.41,

(al =S+ Ay + A z+A) + (a®> = b*)S(z,y + A,z + A)

+ (@ =)S(x+ Ay, 2+ A) + (a* = bY)S(z, 9,2+ A)

(6.59)
+ (@ = )S(z+ Ay + A, 2) + (a® = 0)S(z,y + A, 2)
+ (a7 - bG)S(.T + A’y) Z) + (a8 - bg)S(xa Y, Z) = 07
(b —cHS(@+ Ay + A2+ A)+ 1 —)S(z+ Ay, 2+ A)
£ = )S(,y + A, + A) + (5 — S,y 2 + A)
(6.60)

+ (0" = A)S(w+ Ay +A,2) + (15— O)S(z+ Ay, 2)

+ (b7 - 04)S($a Y+ Aa Z) + (b8 - CS)S(‘T’ya Z) =0,
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(a' =S+ Ay + A2+ A)+ (a* —P)S(z,y + A,z + A)
+(a® = )S(x + Ay, 2z + A) + (a* — c")S(z,y, 2 + A)

(6.61)
+ (@ =S+ A y+A,z)+ (0 - ")S(z,y+ A, 2)

+ (a7 - C6)S(.’E + A7y7 Z) + (a8 - CS)S(:I},y7 Z) =0.

Enforcing the symmetry property in each of Egs. 6.59, 6.60, and 6.61, we can group together equiv-

alent form-factors. The linearly independent terms in each equation must still vanish, individually,

and we obtain the constraints

=02 =v1a® =0 a =b',a" -0 =07 — a8, a® — b2 =% — 2, (6.62)
B=Er=310=S80 =0 —"=c =00 =2 -1, (6.63)
S=SFd=cd=td="ad-c"=S-d",®-a*=2—-d. (6.64)

Solving the (overconstrained, but still consistent) set of Eqs. 6.43, 6.47, 6.48, 6.49, 6.53, 6.54, 6.55,

6.62, 6.63, and 6.64, we obtain the coefficients,

1 1 1 1 1 1 1 1
al:g,CLQ:—g,a3:6,042—6,0/5:6,CLGZ—E,CL?:g,CLg:—g,
1 1 1 1 1 1 1 1
bl —— b2 — b3 _ = b4 - _ = b5 =, bG =_Z, b7 =, b8 ==, (665)
3’ ’ 6’ 6’ 6 6 3 3
U P (I VR SN O S N S
3 3 6 6 6 6 3 3

6.B Numerical heating in 2D
Fig. 6.12 shows the evolution of dimensionless temperature and fractional error for a set of simu-
lations with initial dimensionless temperatures fy = 1072,10~%, and 1073, in 2D. Apart from box

dimensions and the distribution used for initialization of the plasma (see Eq. 6.33), the numerical

240



parameters of these simulations are the same as in the 3D cases presented in Section 6.3.1.

zigzag 15t order 2" order 3" order

4 4 4 4
wpt %10 wpt x10 wpt %10 wpt %10

Figure 6.12: Similar to Fig. 6.2, but for 2D rather than 3D simulations; ((a) — (d)) Evolution of dimen-
sionless temperature and ((e) — (h)) fractional error in a uniform plasma with initial dimensionless tem-
peratures 6y = 107°,107%, and 1073, for zigzag, 1°,2"¢, and 3" order Esirkepov (columns 1 — 4, respec-
tively).
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A. Performance and parallel scaling of TRISTAN-MP

Here, we present code performance measurements and parallel scalability data for the PIC code
TRISTAN-MP. In Sec. A.l, we present measurements of the computing time needed to update
one computational cell (fe) and one computational particle (¢p); the numbers reported here
correspond to update times needed in 3D simulations. In Sec. A.2, we present the performance of
TRISTAN-MP when scaling to a large number of nodes. The tests were performed on Stampede2 at
the Texas Advanced Computing Center (TACC).

A.1 Code performance

Table A.1 shows the reference values for the computational time needed to update one cell (tcen)
and one particle (tp), for 3D simulations using TRISTAN-MP. Measurements were obtained from
simulations of counterstreaming plasma beams with periodic boundary conditions, with a constant
number of particles and cells, and results were averaged over 250 time iterations. Each computa-
tional cell was initialized with two particles. All diagnostics in the code were off, i.e. the writing
of HDF5 output to disk was disabled.

The tests on Stampede2 were performed using both Knights Landing (KNL) and Skylake (SKX)
nodes. For KNL nodes, the tests were performed with a computational domain of L, x L, X L, =
544 x 10000 x 16 cells assigned to each node, and 68 tasks per node (within the recommended range
64-68). For SKX nodes, the tests were performed with a computational domain of L, x Ly x L, =
384 x 10000 x 16 cells assigned to each node, and 48 tasks per node. In both sets of tests, the
domain was decomposed along the x direction, fixing the computational load per core in each case
to be the same, i.e. a domain of L, x L, x L, = 8 x 10000 x 16 cells was assigned to each core. The
measurements presented in Table A.1 may be interpreted as the time required by a typical core

(when averaging over all cores in one node) to update one particle and one cell. As we show in Sec.
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System time/cell ‘teen’ [us] time/particle ‘tuy’ [ps]

Stampede2 (KNL) 0.099 0.68
Stampede2 (SKX) 0.088 0.26

Table A.1: Performance of TRISTAN-MP on Stampede2, for Knight’s Landing (KNL) and Skylake (SKX)
nodes.

A.2, the efficiency of TRISTAN-MP does not decrease significantly when scaling to more than one
node, so the results presented in Table A.1 can be used as indicative figures for larger simulations.
A.2 Parallel scaling

We performed a weak scaling test on Stampede2, from 1 up to 64 nodes (68 up to 4352 cores)
on KNL nodes, and 1 up to 16 nodes (48 up to 768 cores) on SKX nodes. The parallel scaling
measurements are shown in Fig. A.1.

For the weak scaling test, the problem size was increased linearly with the number of nodes
used, fixing the computational load per node. Again, we used a periodic simulation box with two
particles per cell, and computational load per processor of L, x L, x L, = 10000 x 8 x 16 cells. The
measured parallel efficiency, defined as the ratio of actual computing time per iteration to the ideal
time per iteration (benchmarked to 1 node in Fig. A.1), remains remarkably constant when scaling
to more than one node. This justifies the choice of ‘averaging’ over one node when measuring the

reference values for the time needed to update one particle and one cell (see Table A.1 in Sec. A.1).
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Figure A.1: Parallel efficiency for the weak scaling test on Stampede2, for both KNL and SKX nodes;
from 1 up to 64 nodes (KNL; 68 up to 4352 cores), and from 1 up to 16 nodes (SKX; 48 up to 768 cores).
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B. widPy: Tool for visualization and analysis of
TRISTAN-MP data

To allow for on-the-fly visualization and analysis of TRISTAN-MP data, we developed the interac-
tive tool ‘WidPy,” which is built for Python 3.6 using the PyQt5 and PyQtgraph (author: Luke
Campagnola; see http://www.pyqtgraph.org/) libraries. The tool WidPy is designed in the same
spirit as the IDL widget wid.pro (authors: Anatoly Spitkovsky, Lorenzo Sironi, and Uri Keshet)
and Python package Iseult (author: Patrick Crumley; see https://github.com/pcrumley/Iseult).
Fig. B.1 shows a screenshot of the WidPy interface.

WidPy is intended for general-purpose visualization of TRISTAN-MP data, but also includes fea-
tures that are specific to simulations of magnetic reconnection:

e Option to display a contour delineating the reconnection region, according to user selected

threshold value;

e Slider controlling the reconnection threshold value, dthresh; the reconnection region is se-
lected based on a mixing criterion between right-tagged and left-tagged particles (see Eq.
2.7);

¢ ‘Drag-and-drop’ box which allows for selection of particles in a given region and displays the

corresponding energy spectrum.

A short demonstration and tutorial on WidPy can be found at https://github.com/mrowan137/widpy.

The WidPy project is licensed under the GPLv3 License.
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Figure B.1: Screenshot of the WidPy interface. Dropdown menus on the left allow for display of different
fields of TRISTAN-MP output (the three vertical panels in the middle display the selected fields); a slider
and arrow buttons on the left allow for selection of the timestep at which to display fields. For small data
files, the FPS slider on the left may be used to control the framerate for the movie setting, which (when
enabled) steps through the output files sequentially, displaying a movie in real time. Other controls and
information about the simulation are also contained on the left.
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C. Implementation of Esirkepov density decomposition
In Ch. 6, we present tests of the Esirkepov (2001) density decomposition algorithm, which we
have implemented in the electromagnetic particle-in-cell code TRISTAN-MP (Spitkovsky, 2005), a
massively-parallel version of TRISTAN (Buneman, 1993). Here, we show as an example our imple-
mentation (in unoptimized form) of the 3"d-order Esirkepov scheme. In the example below, the
algorithm is written for readability rather than speed.

We consider a particle that moves from position p; = (z1,y1,21) to pa = (z2,y2, 22). First, we
compute the 3" order shape functions when the particle is at p;: Sx1, Syl, and Sz1. These arrays
are computed according to Eq. 6.28. Sx1, Syl, and Szl are length-six arrays; dx1, dyl, and dz1l

are distances from p; to the primal grid point (|z1], [y1], [21]):

s ~

if (dx1l.le.0.5) then
Sx1(2) = (-1/6.)*(dx1l - 1.)*x(dx1l - 1.)*x(dx1 - 1.)
Sx1(3) (2/3.) + 0.5%(dx1 - 2.)*dx1l*dx1l
Sx1(5) (1/6.)*dx1*dx1*dx1
1Sx1(4)=(1/6.)*(1.+3.xdx1x(1l.+dx1-dx1*dx1))
Sx1(4) = 1. - Sx1(5) - Sx1(3) - Sx1(2)

iterxlmin = 2

iterxlmax = 5
elseif (dxl.gt.0.5) then

Sx1(5) = (1/6.)*dx1*xdx1*xdx1l
Sx1(4) = (2/3.) + 0.5%(-1. - dx1)*(1. - dx1)*(1. - dx1)
Sx1(2) = (1/6.)*(1. - dx1)*(1. - dx1)*(1. - dxl)

1Sx1(3)=(1/6.)*(1.+3.*%(1.-dx1)*(2.-(1l.-dx1)*(1l.-dx1)-dx1))
Sx1(3) = 1. - Sx1(5) - Sx1(4) - Sx1(2)
iterxlmin = 2
iterxlmax = 5
endif
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if (dyl.le.0.5) then

Sy1(2) = (-1/6.)*(dyl - 1.)*x(dyl - 1.)x(dyl - 1.)
Sy1(3) = (2/3.) + 0.5%x(dyl - 2.)xdyl*dyl
Sy1(5) = (1/6.) *dylxdyl*dyl

1Sy1(4) = (1/6.)*(1.+3.*%dyl*(1l.+dyl-dyl*dyl))
Syl(4) = 1. - Syl(5) - Syl(3) - Syl(2)
iterylmin = 2
iterylmax = 5

elseif (dyl.gt.0.5) then

Sy1(5) = (1/6.)*dylxdyl*dyl
Syl1(4) = (2/3.) + 0.5%(-1. - dyl)*(1. - dyl)*(1. - dyl)
Sy1(2) = (1/6.)*(1. - dyl)*(1l. - dyl)*(1. - dyl)

1Sy1(3)=(1/6.)*(1.+3.%(1.-dyl)*(2.-(1.-dyl)*(1.-dyl)-dyl1))
Syl1(3) = 1. - Syl(5) - Syl(4) - Syl(2)
iterylmin = 2
iterylmax = 5
endif

#ifndef twoD
if (dzl.1le.0.5) then

Sz1(2) = (-1/6.)*(dzl - 1.)*x(dzl - 1.)x(dzl - 1.)
Sz1(3) = (2/3.) + 0.5%x(dzl - 2.)*dzl*xdzl

Sz1(5) = (1/6.)*dzl*dzl*dzl
1Sz1(4)=(1/6.)*(1.+3.xdz1x(1l.+dz1l-dz1l*dzl))

Sz1(4) = 1. - Sz1(5) - Sz1(3) - Szi(2)
iterzlmin = 2
iterzlmax = 5
elseif (dzl.gt.0.5) then
Sz1(5) = (1/6.)*dzlxdzl*xdzl
Sz1(4) (2/3.) + 0.5%(-1. - dz1)*x(1. - dzl)*(1. - dzl)
Sz1(2) (1/6.)*(1. - dzl)x(1. - dzl)*(1. - dzl)
1521(3) = (1/6.)*(1.+3.%(1.-dz1l)*(2.-(1.-dzl)*(1l.-dzl)-dzl))
Sz1(3) = 1. - Sz1(5) - Sz1(4) - Sz1(2)

iterzlmin = 2

iterzlmax = 5
endif
#endif
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We compute also the 3'4 order shape functions when the particle is at p: Sx2, Sy2, and Sz2;

here, dx2, dy2, and dz2 are distances from py to the primal grid point (|z2], |y2], [22])):

if (dx2.1le.0.5) then

Sx2(2+shifti) = (-1/6.)*(dx2 - 1.)*x(dx2 - 1.)*(dx2 - 1.)
Sx2(3+shifti) = (2/3.) + 0.5%(dx2 - 2.)*xdx2*dx2
Sx2(5+shifti) = (1/6.)*xdx2*xdx2xdx2

1Sx2(4)=(1/6.)*(1.+3.*xdx2x(1.+dx2-dx2*dx2))
Sx2(4+shifti) = 1. - Sx2(5+shifti) - Sx2(3+shifti) &
- Sx2(2 + shifti)
iterx2min = 2 + shifti
iterx2max = 5 + shifti
elseif (dx2.gt.0.5) then

Sx2(5+shifti) = (1/6.)*dx2*xdx2*dx2

Sx2(4+shifti) = (2/3.) + 0.5%(-1. - dx2)*x(1. - dx2)*(1. - dx2)
Sx2(2+shifti) = (1/6.)*x(1. - dx2)*(1. - dx2)*(1. - dx2)
Sx2(3+shifti) = 1. - Sx2(5+shifti) - Sx2(4+shifti) &

- Sx2(2 + shifti)
iterx2min = 2 + shifti
iterx2max = 5 + shifti

endif

if (dy2.1le.0.5) then

Sy2(2+shiftj) = (-1/6.)*x(dy2 - 1.)x(dy2 - 1.)x(dy2 - 1.)
Sy2(3+shiftj) = (2/3.) + 0.5x(dy2 - 2.)xdy2xdy2

Sy2(5+shiftj) = (1/6.) xdy2*dy2xdy2

Sy2(4+shiftj) = 1. - Sy2(5+shiftj) - Sy2(3+shiftj) - Sy2(2+shiftj)

itery2min = 2 + shiftj
itery2max = 5 + shiftj
elseif (dy2.gt.0.5) then

Sy2(5+shiftj) = (1/6.)*dy2xdy2xdy2

Sy2(4+shiftj) = (2/3.) + 0.5%(-1. - dy2)*(1. - dy2)*x(1. - dy2)
Sy2(2+shiftj) = (1/6.)*x(1. - dy2)*(1. - dy2)*(1. - dy2)
Sy2(3+shiftj) = 1. - Sy2(5+shiftj) - Sy2(4+shiftj) &

- Sy2(2 + shiftj)
itery2min = 2 + shiftj
itery2max = 5 + shiftj

endif
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jterxmin = min(iterxlmin, diterx2min)
iterxmax = max(iterxlmax, iterx2max)
iterymin = min(iterylmin, ditery2min)

iterymax = max(iterylmax, itery2max)

#ifndef twoD
if (dz2.1le.0.5) then

Sz2(2+shiftk) = (-1/6.)*(dz2 - 1.)*x(dz2 - 1.)*(dz2 - 1.)
Sz2(3+shiftk) = (2/3.) + 0.5%x(dz2 - 2.)*dz2xdz2
Sz2(5+shiftk) = (1/6.) *dz2xdz2xdz2

Sz2(4+shiftk) = 1. - Sz2(5+shiftk)-Sz2(3+shiftk) &

-Sz2(2 + shiftk)
iterz2min = 2 + shiftk
iterz2max = 5 + shiftk
elseif (dz2.gt.0.5) then
Sz2(5+shiftk) = (1/6.)*xdz2xdz2*dz2
Sz2(4+shiftk) = (2/3.) + 0.5%(-1. - dz2)*x(1. - dz2) &
*x(1. - dz2)
Sz2(2+shiftk) = (1/6.)*x(1. - dz2)*(1. - dz2)*(1. - dz2)
Sz2 (3+shiftk) 1. - Sz2(5+shiftk) - Sz2(4+shiftk) &
- Sz2(2 + shiftk)
iterz2min = 2 + shiftk
iterz2max = 5 + shiftk
endif

iterzmin = min(iterzlmin,iterz2min)

iterzmax = max(iterzlmax,iterz2max)
#endif

With the shape functions at p; and po defined, we compute the charge weights Wx, Wy, and Wz

(six-by-six arrays) according to Eqs. 6.15, 6.16, and 6.17:
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do iter = 1,6
DSx(iter) = Sx2(iter) - Sx1(iter)
DSy(iter) = Sy2(iter) - Syl(iter)
DSz (iter) Sz2(iter) - Szl(iter)

enddo

do iter2 = 1,6
do iterl = 1,6
do iter = 1,6

Wx (iter, titerl, -diter2) = &
DSx(iter)*(Syl(iterl)*Szl(iter2) &
+ 0.5%DSy(iterl)*Szl(iter2) &
+ 0.5%Syl(diterl)*DSz(iter2) &
+ (1/3.)*DSy(iterl)*DSz(iter2))

Wy (iter, titerl, diter2) = &
DSy (iterl)*(Sx1l(iter)*Szl(iter2) &
+ 0.5xDSx (iter)*Szl(iter2) &
+ 0.5xSx1(iter)*DSz(iter2) &
+ (1/3.)*DSx(iter)*DSz(iter2))

Wz (iter, titerl, diter2) = &
DSz (iter2)*(Sx1(iter)*Syl(iterl) &
+ 0.5%DSx(iter)*Syl(iterl) &
+ 0.5*%Sx1(iter)*xDSy(iterl) &
+ (1/3.)*DSx(iter)*DSy(iterl))

enddo
enddo

enddo

The weights Wx, Wy, and Wz determine the current to deposit on the grid. The deposited currents
due to z, y, and z motion are computed and then stored temporarily in seven-by-seven arrays tmpx,

tmpy, and tmpz
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do iter = 1,6
do diterl = 1,6
do iter2 = 1,6
if(iter.eq.1l) then
tmpx (iter, diterl, dter2) = gxWx(iter, iterl, iter2)
else
tmpx (iter, diterl, iter2) = tmpx(iter-1, iterl, -iter2) &
+ g*Wx(iter, iterl, -iter2)
endif
enddo
enddo
enddo
do iter = 1,6
do diterl = 1,6
do iter2 = 1,6
if(iterl.eq.1l) then
tmpy (iter, iterl, iter2) = g*Wy(iter, iterl, diter2)
else
tmpy (iter, diterl, iter2) = tmpy(iter, iterl-1, -iter2) &
+ g*xWy(iter, iterl, -diter2)
endif
enddo
enddo
enddo
do iter = 1,6
do diterl = 1,6
do iter2 = 1,6
if(iter2.eq.1l) then
tmpz(iter, iterl, iter2) = g*Wz(iter, iterl, diter2)
else
tmpz(iter, diterl, iter2) = tmpz(iter, iterl, iter2-1) &
+ gxWz(iter, iterl, iter2)
endif
enddo
enddo

enddo

The global current arrays curx, cury, and curz are updated according to the deposited currents
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tmpx, tmpy, and tmpz

~

do diter=1,6
do iterl=1,6
do diter2=1,6
curx(il-3+iter, jl-3+iterl, kl-3+iter2) = &
curx(il-3+iter, jl-3+iterl, kl-3+iter2) &
+ tmpx(iter, diterl, iter2)
cury(il-3+iter, jl-3+iterl, kl-3+iter2) = &
cury(il-3+iter, jl-3+iterl, kl-3+iter2) &
+ tmpy(iter, iterl, -iter2)
curz(il-3+iter, jl-3+iterl, kl-3+iter2) = &
curz(il-3+iter, jl-3+iterl, kl-3+iter2) &
+ tmpz(iter, iterl, -iter2)
enddo
enddo

enddo

During the particle-push step, the electric and magnetic fields are interpolated to the particle
location in a way that is consistent with the choice of particle stencil (see Eq. 6.36). In the block
of code below, Sxp, Syp, and Szp are the shape functions, and ex_p, ey_p, ez_p, bx_p, by_p, and

bz_p are the electromagnetic fields interpolated to the primal gridpoints.
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#ifndef twoD
do iter3 = diter3min,iter3max
do iter2 = [dter2min,iter2max
ex0=ex0 + sum(ex_p(ip-3+iterlmin:ip-3+iterlmax, &
jp-3+iter2, kp-3+iter3)
*Sxp(iterlmin:iterlmax))*Syp(iter2)*Szp(iter3)
ey0=ey@® + sum(ey_p(ip-3+iterlmin:ip-3+iterlmax, &
jp-3+iter2, kp-3+iter3)
*Sxp (iterlmin:iterlmax))*Syp(iter2)*Szp(iter3)
ez0=ez0 + sum(ez_p(ip-3+iterlmin:ip-3+iterlmax, &
jp-3+iter2, kp-3+iter3)
*Sxp(iterlmin:iterlmax))*Syp(iter2)*Szp(iter3)
bx0=bx0+sum(bx_p(ip-3+iterlmin:ip-3+iterlmax, &
jp-3+iter2, kp-3+iter3)
*Sxp(iterlmin:iterlmax))*Syp(iter2)*Szp(iter3)
by0=by® + sum(by_p(ip-3+iterlmin:ip-3+iterlmax, &
jp-3+iter2, kp-3+iter3)
*Sxp(iterlmin:iterlmax))*Syp(iter2)*Szp(iter3)
bz0=bz0+sum(bz_p(ip-3+iterlmin:ip-3+iterlmax, &
jp-3+iter2, kp-3+iter3)
*Sxp (iterlmin:iterlmax))*Syp(iter2)*Szp(iter3)
enddo
enddo
#else
do iter2 = diter2min,iter2max
do diterl = diterlmin,iterlmax
lpp = (ip-3+iterl) + diyx(jp-3+iter2-1)
lpd = (ip-3+iterl) + dyx(jd-3+iter2-1)
ldp = (id-3+iterl) + dyx(jp-3+iter2-1)
ldd = (id-3+iterl) + dyx(jd-3+iter2-1)

ex0 = ex0O + ex(ldp, 1, 1)*Sxd(iterl)=*Syp(iter2)
ey0 = ey® + ey(lpd, 1, 1)*Sxp(iterl)=*Syd(iter2)
ez0 = ez0 + ez(lpp, 1, 1)*Sxp(iterl)*Syp(iter2)
bx0 = bx0 + bx(lpd, 1, 1)*Sxp(iterl)x*Syd(iter2)
byd = by® + by(ldp, 1, 1)*Sxd(iterl)x*Syp(iter2)
bz0 = bz0 + bz(ldd, 1, 1)*Sxd(iterl)x*Syd(iter2)
enddo
enddo

#endif
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