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ABSTRACT
We study the linear stability of a planar interface separating two fluids in relative motion, focusing on the symmetric configuration
where the two fluids have the same properties (density, temperature, magnetic field strength, and direction). We consider the most
general case with arbitrary sound speed 𝑐s, Alfvén speed 𝑣A, and magnetic field orientation. For the instability associated with the
fast mode, we find that the lower bound of unstable shear velocities is set by the requirement that the projection of the velocity onto
the fluid-frame wavevector is larger than the projection of the Alfvén speed onto the same direction, i.e., shear should overcome
the effect of magnetic tension. In the frame where the two fluids move in opposite directions with equal speed 𝑣, the upper bound
of unstable velocities corresponds to an effective relativistic Mach number 𝑀re ≡ 𝑣/𝑣f⊥

√︃
(1 − 𝑣2

f⊥)/(1 − 𝑣2) cos 𝜃 =
√

2, where
𝑣f⊥ = [𝑣2

A + 𝑐2
s (1 − 𝑣2

A)]
1/2 is the fast speed assuming a magnetic field perpendicular to the wavevector (here, all velocities are

in units of the speed of light), and 𝜃 is the laboratory-frame angle between the flow velocity and the wavevector projection onto
the shear interface. Our results have implications for shear flows in the magnetospheres of neutron stars and black holes — both
for single objects and for merging binaries — where the Alfvén speed may approach the speed of light.
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1 INTRODUCTION

The Kelvin-Helmholtz instability (KHI) (Von Helmholtz & Monats
1868; Lord Kelvin 1871) — growing in between two fluids in relative
motion — is one of the most common instabilities in space and
astrophysical flows. Since the pioneering works of Chandrasekhar
(1961), the linear theory of the KHI has been investigated under a
variety of conditions (Turland & Scheuer 1976; Blandford & Pringle
1976; Ferrari et al. 1980; Pu & Kivelson 1983; Kivelson & Zu-
Yin 1984; Bodo et al. 2004; Osmanov et al. 2008; Blumen et al.
1975; Ferrari et al. 1978; Sharma & Chhajlani 1998; Prajapati &
Chhajlani 2010; Sobacchi & Lyubarsky 2018; Berlok & Pfrommer
2019; Rowan 2019; Hamlin & Newman 2013; Bodo et al. 2013,
2016, 2019; Pimentel & Lora-Clavĳo 2019), depending on whether
the two fluids have comparable or different properties (respectively,
“symmetric” or “asymmetric” configuration), whether the flow is
incompressible or compressible, and whether or not the fluids are
magnetized. Most earlier works assumed that the relative velocity
between the two fluids is non-relativistic.

In Chow et al. (2023), we studied the linear properties of the
KHI for the asymmetric conditions expected at the boundaries of
relativistic astrophysical jets. We assumed a magnetically-dominated
jet and a gas-pressure-dominated wind, derived the most general form

★ E-mail: kc3058@columbia.edu

of the dispersion relation, and provided an analytical approximation
of its solution for wind sound speeds much smaller than the jet Alfvén
speed, as appropriate for realistic astrophysical jets.

Although asymmetric conditions are more common in astrophysi-
cal systems, it is still interesting to consider the (potentially simpler)
symmetric case in which the two fluids have the same properties
(sound speed, magnetic field strength, and orientation). Most pre-
vious works on the KHI in the relativistic regime focused on the
symmetric case. For relativistic hydrodynamic systems (i.e., with no
magnetic fields), Bodo et al. (2004) obtained an analytical expression
for the instability growth rate and derived an absolute upper bound
on the range of unstable shear velocities. For symmetric relativistic
magnetohydrodynamical flows, Osmanov et al. (2008) considered the
case of magnetic field aligned with the direction of relative motion.

In this paper, we study the most general symmetric configuration
with arbitrary sound speed, Alfvén speed, and magnetic field ori-
entation. We relax the restriction of a flow-aligned magnetic field
adopted by Osmanov et al. (2008) and consider the most general
scenario where both the unstable wavevector and the magnetic field
can have arbitrary directions. We derive the most general form of
the dispersion relation and present several analytical results in the
astrophysically-relevant regime where magnetic pressure dominates
over gas pressure.

The rest of the paper is organized as follows: section 2 describes
the setup of our study; section 3 derives the dispersion relation for the
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2 A. Chow et al.

Figure 1. Schematic diagram of the interface separating two fluids in relative
motion. The interface (grey color) is located in the 𝑥 − 𝑧 plane. Above and
below the interface are fluids I and II with the same Alfvén speed 𝑣A and
sound speed 𝑐s. q∥ is the projection of wavevector q onto the interface. We
consider the system in the laboratory frame where fluids I and II have shear
velocities +𝑣�̂� and −𝑣�̂�, respectively. B0 is the magnetic field vector in the
fluid rest frame. 𝜃 is the angle between q∥ and �̂� (in the laboratory frame)
while Ω is the angle between B0 and �̂� (in the fluid frame).

most general case, having arbitrary Alfvén speed and sound speed;
section 4 anticipates the range of unstable velocities, and provides
a physical interpretation for the lower bound of the unstable region;
section 5 focuses on magnetically-dominated flows (i.e., with mag-
netic pressure much larger than gas pressure) and derives analytical
results for the growth rate and the range of unstable velocities; sec-
tion 6 discusses results obtained for the general case in which the gas
pressure cannot be neglected. We conclude in section 7, where we
also discuss some astrophysical implications.

2 SETUP

In this work, we consider a magnetized planar vortex sheet in the
𝑥–𝑧 plane at 𝑦 = 0, as shown in Figure 1. The magnetic field in fluid
I (𝑦 > 0) and II (𝑦 < 0) is given by B0 = (𝐵0x, 0, 𝐵0z), where the
𝑥 component of the magnetic field, 𝐵0x, is along the flow direction
and the 𝑧 component, 𝐵0z, is perpendicular to the flow direction.
The magnetic field B0 is defined in the fluid rest frame. We solve
the system in the laboratory frame where fluid I moves with velocity
v = +𝑣𝑥 and fluid II moves with velocity v = −𝑣𝑥. We use subscripts
‘+’ and ‘-’ to denote fluid I or II. We adopt Gaussian units such that
𝑐 = 4𝜋 = 1 and define all velocities (i.e., the shear velocity, the sound
speed and the Alfvén speed) in units of the speed of light 𝑐.

We describe the flow with the equations of ideal relativistic mag-
netohydrodynamics (RMHD) (e.g., Anile 1990; Mignone et al. 2018;

Rowan 2019):

𝜕 (𝜌𝛾)
𝜕𝑡

+ ∇ · (𝜌𝛾v) = 0 (1a)

𝜕

𝜕𝑡
(𝑤𝛾2v) + ∇ · (𝑤𝛾2vv) + ∇𝑝 = 𝜌eE + J × B (1b)

𝜕B
𝜕𝑡

+ ∇ × E = 0 (1c)

𝜕E
𝜕𝑡

− ∇ × B = −J (1d)

𝜕

𝜕𝑡
(𝑤𝛾2 − 𝑝) + ∇ · (𝑤𝛾2v) = J · E (1e)

supplemented with the divergence constraints

∇ · E = 𝜌e, ∇ · B = 0 . (2)

Here, 𝜌 is the rest mass density, 𝜌e the charge density, J the current
density vector, v the fluid velocity vector, 𝛾 the Lorentz factor, B the
magnetic field vector, E the electric field vector, 𝑤 the enthalpy den-
sity and 𝑝 the gas pressure. For an ideal gas with constant adiabatic
index Γ, the enthalpy can be written as 𝑤 = 𝜌 + Γ𝑝/(Γ − 1).

The sound speed (see e.g. Mignone et al. 2018) and the Alfvén
speed, both defined in the fluid rest frame, can be written as

𝑐𝑠 =

√︄
𝑤0 − 𝜌0 (𝜕𝑤0/𝜕𝜌0)
(𝜕𝑤0/𝜕𝑝0) − 1

1
𝑤0

=

√︂
Γ
𝑝0
𝑤0

(3)

and

vA =
B0√︃

𝑤0 + 𝐵2
0x + 𝐵2

0z

, (4)

where “0” subscripts indicate variables in the equilibrium state. We
define 𝑣A as the magnitude of the Alfvén speed.

3 GENERAL DISPERSION RELATION

The dispersion relation of the surface wave at the interface can be
obtained from the dispersion relation of the body waves of each
fluid (Alfvén, slow, fast modes) together with the pressure balance
and displacement matching across the interface (e.g., Bodo et al.
2004). The dispersion relation of the body wave can be found by
linearization of Equation 1 in the fluid rest frame, by substituting the
following perturbed variables

𝜌 ≈ 𝜌0 + 𝜌1 , (5a)
𝑝 ≈ 𝑝0 + 𝑝1 , (5b)
v ≈ 0 + v1 , (5c)
E ≈ 0 + E1 , (5d)
B ≈ B0 + B1 , (5e)
𝜌e ≈ 0 + 𝜌e1 , (5f)

where “1” subscripts indicate first-order perturbed variables, all de-
fined in the fluid rest frame. The perturbed electric field in the fluid
is given by E1 = −v1 × B0 in the ideal MHD limit, and the cur-
rent density is eliminated from Equation 1 by using Equation 1d.
We consider perturbed variables 𝑋1 to be plane waves, of the form
𝑋1 ∝ 𝑒𝑖 (q̃·x− �̃�𝑡 ) where q̃ = ( �̃� , 𝑙, �̃�) is the complex wavevector and
�̃� is the complex angular frequency, both defined in the rest frame
of each fluid (we use overtilde to denote rest-frame frequencies and
wavevectors). By solving the linearized system of RMHD equations,
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The Kelvin-Helmholtz instability in relativistic magnetized symmetric flows 3

the dispersion relation of the body waves can then be written as

�̃�± (�̃�2
± − 𝑞2

±𝑣
2
A cos2 �̃�±) [�̃�4

± − (𝑣2
A + 𝑐2

s (1 − 𝑣2
A))𝑞

2
±�̃�

2
±

+ (𝑞2
± − �̃�2

±)𝑐2
s 𝑣

2
A𝑞

2
± cos2 �̃�±] = 0 , (6)

where

cos �̃�± =
�̃�±𝐵0x + �̃�±𝐵0z√︃

�̃�2
± + 𝑙2± + �̃�2

±
√︃
𝐵2

0x + 𝐵2
0z

, (7)

is the cosine of the angle between the magnetic field and the fluid-
frame wavevector q̃. The second term of Equation 6 (in round brack-
ets) corresponds to Alfvén waves, which lead to stable solutions. The
third term in Equation 6 (in square brackets) has solutions

�̃�2
±

𝑞2
±

=
1
2

(
𝑣2

A + 𝑐2
s (1 − 𝑣2

A) + 𝑣2
A𝑐

2
s cos2 �̃�±

±
√︃
[𝑣2

A + 𝑐2
s (1 − 𝑣2

A sin2 �̃�±)]2 − 4𝑣2
A𝑐

2
s cos2 �̃�±

)
, (8)

which correspond to fast and slow magnetosonic modes (plus and
minus sign, respectively), which are potentially unstable (Osmanov
et al. 2008). By setting �̃�± = 𝜋/2 in the fast mode, we can define a
frame-independent quantity

𝑣f⊥ =

√︃
𝑣2

A + 𝑐2
s (1 − 𝑣2

A) , (9)

which is the fast magnetosonic speed in the case that the fluid-frame
wavevector and the magnetic field are orthogonal. Hereafter, we will
use 𝑣f⊥ as defined in Equation 9 to parameterize our results, even in
the general case when the wavevector and the magnetic field are not
orthogonal.

Notice that the transverse components of the wavenumber, 𝑙 and
𝑚, are Lorentz invariant. By applying the following transformations

�̃�± = 𝛾(𝜔 ∓ 𝑘𝑣), �̃�± = 𝛾(𝑘 ∓ 𝜔𝑣), 𝑙± = 𝑙±, �̃�± = 𝑚, (10)

to Equation 6, we can construct the Lorentz invariant ratio 𝑙2+/𝑙2− :

𝑙2+
𝑙2−

= 𝑓 (𝐵0x/𝐵0z, 𝑣, 𝑐𝑠 , 𝑣A, 𝑘, 𝑚, 𝜔) , (11)

where the function 𝑓 can be written explicitly as a function of the pa-
rameters indicated in parenthesis. An independent way of obtaining
𝑙+/𝑙− is to solve the linearized RMHD equations, Eqs. (1), together
with two additional constraints. First, we enforce the first-order pres-
sure balance between the two sides of the interface:

𝑝1++𝐵0x𝐵1x,++𝐵0z𝐵1z,+= 𝑝1−+𝐵0x𝐵1x,−+𝐵0z𝐵1z,− . (12)

Second, the fluid displacements in the 𝑦 direction must match at
the interface. Since the Lagrangian derivative of the displacement
is equal to the transverse velocity 𝑣1y of the fluid, matching the
displacements is equivalent to

𝑣1y,−
𝛾(𝜔 + 𝑘𝑣) =

𝑣1y,+
𝛾(𝜔 − 𝑘𝑣) . (13)

This results in an independent solution for the ratio 𝑙+/𝑙− :

𝑙+
𝑙−

= 𝑔(𝐵0x/𝐵0z, 𝑣, 𝑐s, 𝑣A, 𝑘, 𝑚, 𝜔) . (14)

where the function 𝑔 can be written as a function of the parameters
indicated in parenthesis.

We can finally equate Equation 11 and the square of Equation 14
to obtain the dispersion relation in an implicit form:

𝑓 = 𝑔2 . (15)

We can then rearrange Equation 15 by introducing the dimensionless
ratios

𝜙 =
𝜔

𝑣f⊥
√
𝑘2 + 𝑚2

, 𝑀 =
𝑣

𝑣f⊥
, (16)

where 𝑀 is the flow fast Mach number, i.e., the flow speed in units
of the fast magnetosonic speed defined in Equation 9. With this
parameterization, the dispersion relation in Equation 15 takes the
form(
𝜙

𝑀

) [
𝑐0 + 𝑐1

(
𝜙

𝑀

)2
+ 𝑐2

(
𝜙

𝑀

)4
+ 𝑐3

(
𝜙

𝑀

)6
+ 𝑐4

(
𝜙

𝑀

)8
]
= 0,

(17)

where 𝑐0, 𝑐1, 𝑐2, 𝑐3 and 𝑐4 are constants with respect to 𝜙. Note that
Im(𝜙) > 0 implies that the amplitude of the perturbation grows ex-
ponentially, i.e., the system becomes unstable. Since the factor 𝜙/𝑀
in front of Equation 17 corresponds to a stable mode, Equation 17 is
effectively a quartic equation in (𝜙/𝑀)2 and can be solved analyt-
ically (Weisstein 2020), giving a total of eight (generally, complex)
roots. However, not all of them may be acceptable. First, since we
have introduced spurious roots when squaring it, i.e., not all solu-
tions will satisfy Equation 14. Also, only outgoing waves should be
retained by the Sommerfeld radiation condition (Sommerfeld 1912).
This requires accepting only those roots that satisfy the conditions:

Im(𝑙+) > 0 (18)
Im(𝑙−) < 0. (19)

In the rest of the paper, we present solutions to the dispersion
relation. We first focus on the special case of magnetically-dominated
flows, i.e., 𝑐s ≪ 𝑣A, and then we address the most general case. We
employ the following parameters:

𝑀r = 𝑀

√︃
1 − 𝑣2

f⊥√
1 − 𝑣2

, cosΩ =
𝐵0x√︃

𝐵2
0x + 𝐵2

0z

, cos 𝜃 =
𝑘

√
𝑘2 + 𝑚2

,

(20)

where 𝑀r is a “relativistic” Mach number defined with the spatial part
of the 4-velocity, as in Osmanov et al. (2008), Ω is the angle between
the +𝑥 direction and the magnetic field (in the fluid rest frame), and
𝜃 is the angle (measured in the laboratory frame) between +𝑥 and the
wavevector projection onto the 𝑦 = 0 interface. It is also convenient
to absorb the dependence on cos 𝜃 by defining an effective Mach
number 𝑀re and an effective flow velocity 𝑣e similarly to the purely
hydrodynamic case discussed by Bodo et al. (2004):

𝑀re = 𝑀r cos 𝜃 =
𝑣

𝑣f⊥

√︃
1 − 𝑣2

f⊥√
1 − 𝑣2

cos 𝜃, 𝑣e = 𝑣 cos 𝜃. (21)

In the following, we usually write our solution for 𝜙 in terms of 𝑀re
and 𝑣e (clearly, when cos 𝜃 = 1, we have 𝑀re = 𝑀r and 𝑣e = 𝑣). For
𝑐s = 0, in some cases, it will be convenient to use 𝑣A instead of 𝑣e.
Assuming 𝑐s = 0, the two are related by the following identity

𝑣e =
𝑣A𝑀re cos 𝜃√︃

cos2 𝜃 − 𝑣2
A cos2 𝜃 + 𝑀2

re𝑣
2
A

. (22)

4 BOUNDARIES OF THE UNSTABLE REGION

We anticipate here some general remarks on the range of unstable
velocities 𝑣 (or equivalently, of 𝑀re), which will be confirmed below
in several specific cases. For the upper bound, we expect the system
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to be unconditionally stable if 𝑀re ≥
√

2. This bound has already
been discussed in the purely hydrodynamic case 𝑣A = 0 by Bodo
et al. (2004), where 𝑀re was defined with the sound speed. Here, we
find that the same bound holds, as long as 𝑀re is defined with the
fast magnetosonic speed as in Equation 21.

A physically-insightful lower bound can be found in the case of
instability associated with the fast mode. As shown below, this case
(as opposed to the case of instability associated with the slow mode)
is the most important one since it leads to faster growth rates, and it
is the only one that persists for magnetically-dominated flows with
𝑐s = 0. As we show in section B, unstable modes associated with
the fast magnetosonic wave have vanishing phase speeds (so, zero
real part of 𝜔). The boundaries of the unstable region will also have,
by construction, a vanishing growth rate (so, zero imaginary part of
𝜔). This implies that �̃�± = 𝛾𝑘 (see Equation 10) so that, in the fluid
comoving frame, the angle 𝜃 between the “projected wavevector” q̃∥
(i.e., the projection of q̃ onto the 𝑥 − 𝑧 interface) and the 𝑥 direction
of the shear velocity satisfies

𝛾 tan 𝜃 = tan 𝜃 . (23)

We expect the system to be unstable only if the projection of the
shear velocity onto the direction of q̃∥ is larger than the projection
of the Alfvén speed onto the same direction. Equivalently,

𝑣 cos 𝜃 > 𝑣A cos(Ω − 𝜃) . (24)

In other words, instability happens when the shear can overcome
the effect of magnetic tension (for particular cases of this general
criterion, see Pu & Kivelson (1983); Roychoudhury & Lovelace
(1986)). Using Equation 23, this can be written as a function of
lab-frame quantities as
𝑣

𝑣A
> cosΩ + sinΩ tan 𝜃

𝛾
. (25)

We demonstrate below that this successfully describes the lower
bound of unstable 𝑣 in the case of fast-mode instability for all 𝑐s, 𝑣A,
and field orientations.

5 MAGNETICALLY-DOMINATED FLOWS

Although the dispersion relation in Equation 17 for the most general
symmetric shear flows is analytically solvable, the solution is too
complex for further analysis of the instability region. However, in
certain regimes of our parameter space, the solution simplifies and is
physically interpretable. This section considers the special case where
the flow is magnetically dominated (𝑐s ≪ 𝑣A). We then assume the
cold plasma limit (𝑐s = 0) and the solution is analytically tractable
and allows for physical insight.

For magnetically-dominated flows, we assume 𝑐s = 0 so that 𝑣f⊥ =

𝑣A and the dispersion relation (Equation 17) is reduced to a quadratic
equation in (𝜙/𝑀)2 with solutions:

𝜙2

𝑀2 =
𝜇1 ± √

𝜇2
𝜇3

(26)

where 𝜇0, 𝜇1 and 𝜇2 are given in section A for completeness.
We now consider a few special cases. First, we consider the case

where the projected wavevector is parallel to the shear flow (cos 𝜃 =

1) for arbitrary 𝑣A and cosΩ. Then, we retain the dependence on cos 𝜃
and 𝑣A, but consider the specific cases of in-plane or out-of-plane
fields (𝐵0z = 0 or 𝐵0x = 0, respectively; equivalently, cosΩ = 1 or
cosΩ = 0, respectively). Finally, we retain the angular dependence
on cos 𝜃 and cosΩ, but we consider the extreme limit 𝑣A → 1. These
cases are summarized in Table 1.

Table 1. Magnetically-dominated cases.

𝑣A cos 𝜃 cosΩ Growth Rate Unstable Range

Arbitrary 1 Arbitrary Equation 27 Equation 28
Arbitrary Arbitrary 1 Equation 30 Equation 31
Arbitrary Arbitrary 0 Equation 33 Equation 34

1 Arbitrary Arbitrary Equation 36 Equation 37

5.1 Magnetically-dominated flows with projected wavevector
along the shear velocity

We now consider the case where the projected wavevector is parallel
to the shear flow (cos 𝜃 = 1, in which case 𝑀re = 𝑀r and 𝑣e = 𝑣),
where the solution of Equation 26 can be written as

𝜙2

𝑀2 =
𝜅1 ± √

𝜅2
𝜅3

, (27)

where

𝜅1 = 𝑀4
r 𝑣

2
A (1 − 𝑣2

A cos2 Ω)2 + 𝑀2
r (1 − 𝑣2

A) (1 − 𝑣2
A cos2 Ω)2

+ (1 − 𝑣2
A) (1 − 𝑣2

A cos4 Ω)

𝜅2 = (1 − 𝑣2
A cos2 Ω)2 [(1 − cos2 Ω)2 (1 − 𝑣2

A)
2

+ 4𝑀2
r (1 − cos2 Ω𝑣2

A)
2 (1 − 𝑣2

A + 𝑀2
r 𝑣

2
A)]

𝜅3 = 𝑀2
r [1 − 𝑣2

A + 𝑀2
r 𝑣

2
A (1 − 𝑣2

A cos2 Ω)] [1 + (1 − 2 cos2 Ω)𝑣2
A

+ 𝑀2
r 𝑣

2
A (1 − 𝑣2

A cos2 Ω)]/(1 − 𝑣2
A + 𝑀2

r 𝑣
2
A).

Since 𝜅2 and 𝜅3 are always positive, the condition for instability can
be found from the inequality 𝜅2

1 < 𝜅2. In this case, the solution is
purely imaginary, and the instability range in 𝑀r reads

cosΩ
√︃

1 − 𝑣2
A√︃

1 − 𝑣2
A cos2 Ω

< 𝑀r <

√︃
2 − cos2 Ω − 𝑣2

A cos2 Ω√︃
1 − 𝑣2

A cos2 Ω
. (28)

Equation 28 completely characterizes the boundary of the instability
region for cold flows when cos 𝜃 = 1. Note that the left inequality
in Equation 28 can be cast as 𝑣A cosΩ < 𝑣, which implies that the
interface is unstable only when the shear speed is greater than the
projection of the Alfvén speed onto the flow direction (in this case,
the latter coincides with the direction of the projected wavevector),
in agreement with Equation 25 for 𝜃 = 0.

By setting cosΩ = 0 in Equation 28 (i.e., magnetic field perpen-
dicular to the shear flow), the instability region attains its maximum
range. Similarly to the purely hydrodynamic case (but with the fast
speed now replacing the sound speed in 𝑀re), we find

0 < 𝑀r <
√

2 . (29)

5.2 Magnetically-dominated flows with in-plane magnetic field

When the magnetic field is parallel to the flow velocity, i.e., cosΩ = 1,
Equation 26 can be rewritten as:

𝜙2

𝑀2 =
𝜈1 ± √

𝜈2
𝜈3

cos2 𝜃 (30)

where

𝜈1 = 𝑀4
re + 𝑣2

e + 𝑀2
re (1 − 𝑣2

e ),

𝜈2 = sin4 𝜃 (𝑀2
re + 𝑣2

e )2 + 4𝑀4
re [𝑣2

e + 𝑀2
re (1 − 𝑣2

e )],

𝜈3 = (𝑀2
re + 𝑣2

e )2.
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Since 𝜈2 and 𝜈3 are always positive, the condition for instability can
be found from the inequality 𝜈2

1 < 𝜈2. In this case, the solution is
purely imaginary, and the instability range in 𝑀re is

cos 𝜃 < 𝑀re <
√︁

2 − cos2 𝜃 , (31)

where the case cos 𝜃 = 0 should be excluded since it yields a vanish-
ing growth rate. Equation 31 completely characterizes the boundary
of the instability region for cold flows when cosΩ = 1. Note that the
left inequality in Equation 31 can be cast as 𝑣A < 𝑣, implying that
the interface is unstable only when the flow is super-Alfvénic. This
is consistent with the general expression in Equation 25 for the case
Ω = 0 considered here.

By setting cos 𝜃 → 0 in Equation 31, the instability region attains
its maximum range

0 < 𝑀re <
√

2 . (32)

5.3 Magnetically-dominated flows with out-of-plane magnetic
field

We now consider the case of the magnetic field perpendicular to
the shearing flow, i.e., cosΩ = 0. Since the instability boundaries
depend explicitly on 𝑣A, we choose to express the solution in terms
of 𝑣A instead of 𝑣e. By setting Ω = 𝜋/2 in Equation 26, we obtain
the solution for 𝜙 in the form

𝜙2

𝑀2 =
𝜆1 ±

√
𝜆2

𝜆3
cos2 𝜃 , (33)

where

𝜆1 = 𝑀2
re (1 + 𝑀2

re)𝑣2
A − cos4 𝜃𝑣2

A (1 − 𝑣2
A)

+ cos2 𝜃 [1 − 𝑣4
A + 𝑀2

re (1 − 2𝑣2
A)]

𝜆2 = cos8 𝜃 (1−𝑣2
A)

2 + 𝑀4
re𝑣

2
A (4 cos2 𝜃+4𝑀2

re sin2 𝜃𝑣2
A + sin4 𝜃𝑣6

A)

+ 2 cos2 𝜃𝑀2
re (1−𝑣2

A) [2𝑀
2
re sin2 𝜃𝑣2

A+cos4 𝜃𝑣4
A+cos2 𝜃 (2−𝑣4

A)]

𝜆3 = 𝑀4
re𝑣

2
A+cos2 𝜃𝑀2

re (1+𝑣2
A) .

Since 𝜆2 and 𝜆3 are always positive, the criterion for unstable modes
can be derived from the inequality 𝜆2

1 < 𝜆2. The solution is purely
imaginary, and the instability range in 𝑀re is√︃
(1 − cos2 𝜃) (1 − 𝑣2

A) < 𝑀re <

√︃
1 + cos2 𝜃 + 𝑣2

A (1 − cos2 𝜃) ,
(34)

where the case cos 𝜃 = 0 should be excluded since it yields a vanish-
ing growth rate. Equation 34 completely characterizes the boundary
of the instability region for cold flows when cosΩ = 0. Note that
the left inequality of Equation 34 can be cast as 𝑣A tan 𝜃 < 𝛾𝑣.
Once again, this is consistent with Equation 25 for the case Ω = 𝜋/2
considered here.

By setting cos 𝜃 = 1, the instability region attains its maximum
range

0 < 𝑀re <
√

2 , (35)

as we had already derived in Equation 29 under similar assumptions
(cos 𝜃 = 1 and cosΩ = 0).

5.4 Flows with Alfvén speed approaching the speed of light

The system remains unstable in the extreme limit 𝑣A → 1. In this
case, Equation 26 reduces to

𝜙2

𝑀2 =
𝜂2

1 − 𝜂2
2

𝜂3
, (36)

where

𝜂1 = 𝛾 cos 𝜃 cos Ω + sin 𝜃 sin Ω ,

𝜂2 = 𝛾𝑣 cos 𝜃 ,

𝜂3 = 𝛾2𝑣2 (1 − 𝑣2 cos2 Ω) .

Since 𝜂3 is always positive, the criterion for unstable modes can be
derived from the inequality 𝜂2

1 < 𝜂2
2. In this case, the solution is

purely imaginary, and the instability range is

cos Ω + sin Ω tan 𝜃
𝛾

< 𝑣 < 1 . (37)

The lower limit coincides with Equation 25 for 𝑣A = 1.
In the special case of out-of-plane fields, i.e., cosΩ = 0, the

instability growth rate is

𝜙2

𝑀2 =
sin2 𝜃 − 𝑣2

𝑣2 , (38)

whereas the instability range can be cast as

sin 𝜃 < 𝑣 < 1 . (39)

6 GENERAL CASE

In this section, we discuss the dependence of the growth rate on 𝑐s
and 𝑣A. The general solution for arbitrary 𝑐s and 𝑣A is analytically
available but too lengthy to be presented, so we focus on numerical
results.

6.1 Comparison to the hydrodynamic case

When the unstable modes propagate perpendicular to the magnetic
field, we expect magnetic tension to have no effect, and the solution
should resemble the hydrodynamic symmetric case discussed by
Bodo et al. (2004), but now with the fast magnetosonic speed instead
of the sound speed in the definition of 𝑀re. We demonstrate this by
setting cosΩ = 0 and cos 𝜃 = 1 in the general dispersion relation
(Equation 17) and the solution can be written as

𝜙2

𝑀2 =
1 + 𝑀2

r − 𝑣2 ±
√︃

4𝑀2
r (1 − 𝑣2) + (1 + 𝑣2)2

𝑀2
r + 2𝑣2

(40)

which is essentially the same as Equation 15 in Bodo et al. (2004)
for relativistic hydrodynamic flows when the projected wavevector is
parallel to the shear flow. We conclude that even though the system is
magnetized, in the case when cosΩ = 0 and cos 𝜃 = 1, the instability
behaves similarly to the hydrodynamic case. Here, the magnetic field
provides pressure but not tension. We remind that the Mach numbers
in Equation 40 are defined using 𝑣f⊥, and so we allow for an arbi-
trary degree of gas versus magnetic contributions to the pressure (in
contrast to Bodo et al. (2004), which assumed 𝑣A = 0). In analogy
to what found by Bodo et al. (2004), the instability range is

0 < 𝑀r <
√

2 . (41)
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Figure 2. Dependence of the instability growth rate Im(𝜙) on 𝑀𝑟 andΩwhen
𝜃 = 0 (i.e., wavevector along the shear flow), for three choices of 𝑣A and 𝑐s.
Panels in the first, second, and third columns represent 𝑣A = 0.1, 0.5 and
0.9. Panels in the first, second, and third rows represent 𝑐s = 0, 1/2

√
3, 1/

√
3.

In all the panels, Im(𝜙) is then normalized to its maximum value, which is
quoted in the panels themselves. The dashed cyan vertical lines represent the
common upper bound 𝑀re =

√
2 across all panels. The dashed white lines in

the top three panels represent the exact boundaries of the instability region
when 𝑐s = 0 and cos 𝜃 = 1, see Equation 28. The dotted white lines in the
middle and bottom rows represent the lower bound of the fast-mode unstable
region imposed by magnetic tension, as in Equation 25.

6.2 General case

We now consider the problem in its full generality, allowing for
arbitrary 𝑐s, 𝑣A, 𝜃, and Ω. Figure 2 shows the dependence of the
instability growth rate Im(𝜙) on 𝑀re and cosΩ when the wavevector
is parallel to the shear flow (cos 𝜃 = 1, in which case 𝑀re = 𝑀𝑟 ).
Figure 3 and Figure 4 show the dependence of the instability growth
rate on 𝑀re and cos 𝜃 when the orientation of the magnetic field is
parallel (cosΩ = 1) and perpendicular (cosΩ = 0) to the shear flow,
respectively. The case in Figure 3 is the same as in Osmanov et al.
(2008). In all three figures, we consider different combinations of 𝑣A
and 𝑐s. The panels in the left, middle, and right columns correspond
to 𝑣A = 0.1, 0.5 and 0.9, respectively; the panels in the top, middle
and bottom rows correspond to 𝑐s = 0, 1/

√
12 and 1/

√
3 respectively.

The figures plot the imaginary part of 𝜙 (i.e., the growth rate). We
present the real part of the solution (i.e., the phase speed) in section B.

In all figures, we identify two separate instability regions in the
middle-middle, middle-right, and bottom-right panels. The narrow
purple instability stripes are associated with the slow-mode mag-
netosonic wave, while the large instability regions correspond to

Figure 3. Dependence of the instability growth rate Im(𝜙) on 𝑀re and 𝜃

when Ω = 0 (i.e., magnetic field along the flow direction), for three choices
of 𝑣A and 𝑐s. The dashed cyan vertical lines represent the common upper
bound 𝑀re =

√
2 across all panels. The dashed white lines in the top three

panels represent the exact boundaries of the instability region when 𝑐s = 0
and cosΩ = 1, see Equation 31. See the caption of Figure 3 for further details.

the fast-mode wave,1 see Osmanov et al. (2008). For 𝑐s = 0 (top
three panels in all figures), only the fast-mode solution survives. The
middle-left, bottom-left, and bottom-middle panels do not have visi-
ble slow-mode instability bands, but further analysis reveals that they
exist near the left boundaries of the main instability zones whenever
𝑐s ≠ 0.

In section B, we show that unstable modes associated with the slow
wave have nonzero phase speed. In contrast, unstable modes associ-
ated with the fast magnetosonic wave have vanishing phase speed.
As discussed in section 4, the lower bound of unstable velocities
— regarding the fast-mode instability — should obey Equation 25.
This is depicted as a dotted white line in the figures (for the top
row, Equation 25 corresponds to the left branch of the dashed lines),
confirming that Equation 25 successfully describes the lower bound
of unstable 𝑀re of the fast-mode instability.

For the gas pressure dominated case with 𝑐s = 1/
√

3 and 𝑣A = 0.1
(bottom-left panels in Figures 2-4), we expect the orientation of
the magnetic field (i.e., cosΩ) to have little effect on the instability
growth rate, as indeed confirmed by the bottom-left panel of Figure 2.
In the hydrodynamic case, Bodo et al. (2004) found that the growth
rate peaks at cos 𝜃 = 1, it vanishes for cos 𝜃 = 0, and that the range
of unstable Mach numbers is 0 < 𝑀re <

√
2 for all cos 𝜃 ≠ 0. This

1 More precisely, the narrow purple stripes correspond to slow waves in one
fluid and fast waves in the other fluid; the large instability region corresponds
to fast waves in both fluids.
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Figure 4. Dependence of the instability growth rate Im(𝜙) on 𝑀re and 𝜃

when Ω = 𝜋/2 (i.e., magnetic field perpendicular to the flow direction),
for three choices of 𝑣A and 𝑐s. The dashed cyan vertical lines represent the
common upper bound 𝑀re =

√
2 across all panels. The dashed white lines in

the top three panels represent the exact boundaries of the instability region
when 𝑐s = 0 and cosΩ = 0, see Equation 34. See the caption of Figure 3 for
further details.

is in agreement with the near-hydro case displayed in the bottom-left
panels of Figure 3 and Figure 4.

For magnetically-dominated flows, we first consider the top row
of Figure 3 where the plasma is cold (𝑐s = 0), and the magnetic field
is along the shear velocity (cosΩ = 1). When the wavevector is per-
pendicular to the flow (cos 𝜃 = 0), the flow is stable, regardless of 𝑣A.
When the wavevector is parallel to the magnetic field (cos 𝜃 = 1 in
this case), the effect of magnetic tension in suppressing the instability
is the greatest, and the flow is also stable. Since the system is stable
when cos 𝜃 is either 0 or 1, the maximum growth rate is attained at
intermediate values of cos 𝜃. The boundary of the instability region
is fully characterized by Equation 31, which is depicted as white
dashed lines in Figure 3. The left boundary of the unstable region
corresponds to 𝑣A < 𝑣, indicating that the system is unstable only
when the shear can overcome magnetic tension. The upper bound of
the instability region is determined by the right inequality in Equa-
tion 31. For cos 𝜃 → 0, magnetic pressure dominates over tension,
and the range of unstable Mach numbers approaches the one of the
hydrodynamic case (compare with the bottom-left panel in Figure 3).

The magnetically-dominated flows with cosΩ = 0, i.e., field or-
thogonal to the shear velocity (top row in Figure 4) show instabil-
ity profiles which are vastly different than the case in Figure 3. At
cos 𝜃 = 1, the magnetic field is perpendicular to the wavevector, par-
allel to the shear flow. Since magnetic tension plays no role, both
the instability growth rate and the unstable Mach number range at

cos 𝜃 = 1 resemble those of the gas-pressure dominated case (bot-
tom left panel of Figure 4; see also our discussion in subsection 6.1).
When cos 𝜃 → 0, the wavevector aligns more and more closely to
the magnetic field, and magnetic tension gets stronger. Therefore,
the instability growth rate gets suppressed when cos 𝜃 → 0, and the
instability range shrinks. It is interesting to note that at intermediate
cos 𝜃 between 0 and 1, the range of unstable Mach numbers widens
for higher 𝑣A. This has a simple explanation: for fixed cos 𝜃 and
fixed 𝑀re, increasing 𝑣A implies an increase in 𝑣. In the fluid frame,
the projected wavevector of the fast-mode instability forms an angle
𝜃 with respect to the shear velocity such that 𝛾 tan 𝜃 = tan 𝜃, see
Equation 23. Therefore, with increasing 𝑣, the fluid-frame wavevec-
tor becomes more aligned with the flow and nearly orthogonal to the
magnetic field. This implies that at fixed cos 𝜃 and increasing 𝑣A, the
system can more easily overcome the effect of magnetic tension.

For magnetically-dominated flows with arbitrary orientation of
the magnetic field and fixed cos 𝜃 = 1 (top row in Figure 2), the
instability profiles at cosΩ = 1 and cosΩ = 0 obviously coincide
with those of Figure 3 and Figure 4 for cos 𝜃 = 1. The white dashed
boundaries of the instability region are described by Equation 28,
where the left inequality can be cast as 𝑣A cosΩ < 𝑣, indicating that
the interface is unstable only when the shear speed is greater than
the projection of the Alfvén speed onto the flow direction (which, in
this case, coincides with the direction of the projected wavevector).

For the general case where both 𝑣A and 𝑐s are nonzero (middle
row of Figures 2-4), the instability behavior can be understood as an
intermediate case between the gas-pressure-dominated case and the
magnetically-dominated case.

Finally, we consider the global boundary of the instability region
in the general case. Although the general dispersion relation in Equa-
tion 17 is analytically solvable, the explicit expression of the unstable
growth rate is too complicated to derive an instability boundary in
terms of 𝑀re analytically. However, the instability criteria that we
derived for magnetically-dominated flows in section 5 allow us to
argue for a global instability boundary in the general case. In the top
three panels of Figures 2-4, the white dashed lines correspond to the
instability boundaries described by Equation 28, 31 and 34 respec-
tively. In each case, as well as in the purely hydrodynamic case, the
maximum instability range is bounded below by 0 and above by

√
2,

as shown in Equation 29, 32 and 35. The lines 𝑀re =
√

2 (the cyan
dashed lines in all panels) appear to provide an upper limit to the
unstable region in all cases. Therefore, we argue that the maximum
instability range in 𝑀re for general symmetric flows is

0 < 𝑀re <
√

2 , (42)

i.e., that flows with 𝑀re ≥
√

2 are unconditionally stable.

7 DISCUSSION AND CONCLUSIONS

We have studied the linear stability properties of the KHI for rela-
tivistic, symmetric, magnetized flows. We considered arbitrary sound
speeds, Alfvén speeds, and magnetic field orientations and derived
the most general form of the dispersion relation.

Our results show that, for 𝑐s ≠ 0, there are two distinct unstable re-
gions, corresponding to the slow and fast modes of the magnetosonic
wave, consistent with the findings in Osmanov et al. (2008). For
the instability associated with the fast mode, which leads to greater
growth rates, we obtained a lower bound on the range of unstable
shear velocities, see Equation 25. This lower bound reveals a nec-
essary condition for the KHI growth, namely that the projection of
the shear velocity 𝑣 onto the direction of q̃∥ (which, itself, is the
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fluid-frame wavevector projected onto the interface) should be larger
than the projection of the Alfvén speed onto the same direction. In
other words, for the fast mode to become unstable, the free energy
of the shear must overcome magnetic tension. Concerning the upper
bound of unstable shear velocities, we found that the system is un-
conditionally stable if 𝑀re ≥

√
2, regardless of 𝑐s, 𝑣A or magnetic

field direction. Here, 𝑀re is an effective Mach number defined with
the fast magnetosonic speed, see Equation 21.

By considering the cold plasma limit 𝑐s = 0 (equivalently, the
limit of magnetically-dominated plasmas), we derived an analytically
tractable dispersion relation and computed the instability growth rate
and the range of unstable shear velocities for several special cases
(see Table 1). In the limiting case of Alfvén speed approaching the
speed of light, we found that the system is still unstable as long as
the shear speed is greater than the lower bound in Equation 37.

Although most shear flows in the Universe are expected to have
an asymmetric configuration — e.g., the boundaries of AGN jets
(Chow et al. 2023) — the results obtained here for a symmetric setup
in the magnetically-dominated regime 𝑣A ≫ 𝑐s may have important
implications for the magnetospheres of neutron stars and black holes
— both for single objects and for merging binaries.

Binary neutron stars in the latest stages of inspiral are unlikely to
be tidally locked (Bildsten & Cutler 1992). Due to the orbital motion,
the interface between the two magnetospheres can be modeled as a
magnetically-dominated shear layer. This configuration is analogous
to the symmetric setup we adopted in this work. In the final stages
of the inspiral, when the surfaces of the two neutron stars come into
contact, the KHI and ensuing turbulence have also been invoked
to govern rapid magnetic field amplification via dynamo processes
(e.g., Price & Rosswog (2006); Zrake & MacFadyen (2013); Kiuchi
et al. (2015)).

For single objects, shear motions in the azimuthal direction (equiv-
alently, discontinuities in the profile of the angular velocity) have
been revealed by fully kinetic and fluid simulations, both for black
hole magnetospheres (e.g., Figure 3 in El Mellah et al. 2022) and for
pulsar magnetospheres (e.g., Figure 4 in Timokhin 2006). In addi-
tion, in active pulsars, a discontinuity in the poloidal flow velocity is
expected to occur near the star, between the open field lines (loaded
with radially streaming pairs) and the closed magnetosphere.

We conclude with a few caveats. The plane-parallel approach we
employed is applicable only if the width of the shear layer is small
compared to other length scales of the system (e.g., for binary neutron
stars, their separation). Also, we have assumed that the fluids on
the two sides of the interface have the same sound speed, magnetic
field strength, and orientation. In the magnetically-dominated regime,
pressure balance requires the magnetic field strength on both sides to
be the same. However, the field direction will generally be different. In
fact, in nearly all of the astrophysical applications discussed above,
the surface of velocity shear also presents a significant magnetic
shear. Our simplifying assumptions will be relaxed in a future work.
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APPENDIX A: GENERAL SOLUTION FOR MAGNETICALLY-DOMINATED FLOWS

For magnetically-dominated flows, we assume 𝑐s = 0 so that 𝑣f⊥ = 𝑣A and the dispersion relation (Equation 17) is reduced to a quadratic
equation in (𝜙/𝑀)2 with solutions:

𝜙2

𝑀2 =
𝜇1 ± √

𝜇2
𝜇3

(A1)

where

𝜇1 = cos2 𝜃𝑀4
re (1 + 𝑀2

re)𝛾5 − cos3 𝜃 cos2 Ω(𝑀2
re) [cos2 Ω − 2(1 + 𝑀2

re)] sin 𝜃 (1 − 𝛾2)𝛾4

+ cos8 𝜃 sin2 Ω(1 − 𝛾2)2 (𝛾3) [cos2 Ω(1 + 𝛾2) − 𝛾2] − cos7 𝜃 cos2 Ω sin 𝜃 (1 − 𝛾2)2 (𝛾2) [cos2 Ω(1 + 3𝛾2) − 3𝛾2]

+ cos4 𝜃𝑀2
re (1 − 𝛾2) (𝛾3) [cos4 Ω(2 sin2 𝜃 − 1) − 1 − 2𝛾2 + 𝑀2

re (1 − 2𝛾2) + cos2 Ω(1 + 2(1 + 𝑀2
re)𝛾2)]

− cos6 𝜃 (1 − 𝛾2) (𝛾3) [𝛾4 − 1 + 𝑀2
re (1 − 3𝛾2 + 𝛾4) + cos2 Ω(1 + 𝛾2 − 2𝛾4 + 𝑀2

re (1 + 4𝛾2 − 2𝛾4))

+ cos4 Ω((1 − 𝛾2) (2 sin2 𝜃 − 𝛾2) + 𝑀2
re (𝛾4 − 2 − 𝛾2))] − cos5 𝜃 cos2 Ω sin 𝜃 (1 − 𝛾2) (𝛾2) [(1 − 𝛾2) (1 + sin2 Ω𝛾2)

+ 𝑀2
re (6𝛾2 − 1 − 2𝛾4 + cos2 Ω(−1 − 5𝛾2 + 2𝛾4))] (A2)

𝜇2 = cos 𝜃4𝛾4 [cos 𝜃 cos2 Ω sin 𝜃 (1 − 𝛾2) + 𝑀2
re𝛾 − cos2 𝜃 sin4 Ω(1 − 𝛾2)𝛾]2𝑀4

re (cos4 Ω + 4𝑀2
re)𝛾4

− 4 cos 𝜃 cos2 Ω𝑀4
re sin 𝜃𝛾3 (cos2 Ω − 2 + 2𝛾2) + cos8 𝜃 (cos2 Ω − 𝛾2 + 𝛾4 − cos2 Ω𝛾4)2

+ 4 cos7 𝜃 cos2 Ω sin 𝜃 (1 − 𝛾2)2𝛾 [cos2 Ω(1 + 𝛾2) − 𝛾2] + 4 cos5 𝜃 cos2 Ω sin 𝜃 (1 − 𝛾2)𝛾 [(1 − 𝛾2)2 + 𝑀2
re (5𝛾2 − 2𝛾4 − 1)

− cos2 Ω(2 − (3 − 6𝑀2
re)𝛾2 + (1 − 2𝑀2

re)𝛾4)] + 4 cos3 𝜃 cos2 Ω𝑀2
re sin 𝜃𝛾 [(1 − 𝛾2) (2 sin4 Ω𝛾4 − 1 + (−1 + 4 cos2 Ω)𝛾2)

+ 𝑀2
re (1 − 4𝛾2 + 2𝛾4 + cos2 Ω(1 + 𝛾2))] − 2 cos2 𝜃𝑀2

re (𝛾2) [(cos4 Ω) [2 − 3𝛾2 + 𝛾4 + 𝑀2
re (1 − 2 sin2 𝜃 + 𝛾2)]

− 2𝑀2
re (1 − 𝛾2) (𝑀2

re − 2𝛾2 − 1) + cos2 Ω(𝑀2
re (4𝛾4 − 1 − 4𝛾2) − (1 − 𝛾2)2)] + 2 cos6 𝜃 (1 − 𝛾2) [(𝛾2) [𝑀2

re (1 − 4𝛾2 + 2𝛾4)

− (1 − 𝛾2)2] + (cos2 Ω) [1 + 𝛾2 − 4𝛾4 + 2𝛾6 + 𝑀2
re (2𝛾2 − 1 + 7𝛾4 − 4𝛾6)] + cos4 Ω((1 − 𝛾2) [𝛾4 − 2 − (1 − 2 sin2 𝜃)𝛾2]

+ 𝑀2
re (1 − 4𝛾2 − 3𝛾4 + 2𝛾6))] + (cos4 𝜃) [(1 − 𝛾2)4 + 𝑀4

re (1 − 8𝛾2 + 16𝛾4 − 8𝛾6) + 2𝑀2
re (6𝛾2 − 1 − 7𝛾4 + 2𝛾8)

+ (cos4 Ω) [𝑀4
re (1 + 𝛾2)2 + (2 − 3𝛾2 + 𝛾4)2 − 4𝑀2

re (1 − 𝛾2) (1 − 2(2 − sin2 𝜃)𝛾2 + 𝛾6)] + 2(cos2 Ω) [(1 − 𝛾2)3 (𝛾2 − 2)

+ 𝑀4
re (3𝛾2 − 8𝛾4 + 4𝛾6 − 1) + 𝑀2

re (3 − 14𝛾2 + 13𝛾4 + 2𝛾6 − 4𝛾8)]] (A3)

𝜇3 = [𝑀2
re𝛾

2 − cos2 𝜃 (1 − 𝛾2) (cos2 Ω(1 − 𝛾2) + 𝛾2)] [2 cos4 𝜃 sin2 Ω(1 − 𝛾2)2𝛾 − 2 cos3 𝜃 cos2 Ω sin 𝜃 (1 − 𝛾2)2

+ 2 cos 𝜃 cos2 Ω𝑀2
re sin 𝜃 (1 − 𝛾2)𝛾2 + 𝑀4

re𝛾
3 + cos2 𝜃𝑀2

re𝛾(𝛾2 − 2 + 𝛾4 + cos2 Ω(1 − 𝛾4))] (A4)

APPENDIX B: PHASE SPEED OF THE UNSTABLE MODES

In the main text, we presented three figures showing the dependence of the imaginary part of 𝜙 (i.e., the growth rate) on 𝑀re, cos 𝜃, cosΩ, 𝑣A
and 𝑐s. In this Appendix, we provide corresponding plots for the real part (i.e., the phase speed). In section 4, we claimed that unstable modes
associated with the fast magnetosonic wave have vanishing phase speed. Figure B1, Figure B2 and Figure B3 plot the real part of 𝜙, whose
imaginary part was presented in Figure 2, Figure 3 and Figure 4 respectively. To guide the eye, we overplot the boundaries of the unstable
region associated with the fast mode (white dashed and dotted lines). In all three figures, non-zero phase speeds are all located outside of the
fast-mode unstable boundary, indicating that the unstable modes associated with the fast wave indeed have vanishing phase speed. In contrast,
unstable modes associated with the slow wave (more precisely, these modes correspond to slow waves in one fluid, and fast waves in the other
fluid) have nonzero phase speed.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure B1. Dependence of the real part of 𝜙 on 𝑀re and Ω when cos 𝜃 = 1. The corresponding imaginary part of the solution is in Figure 2.

Figure B2. Dependence of the real part of 𝜙 on 𝑀re and 𝜃 when cosΩ = 1. The corresponding imaginary part of the solution is in Figure 3.
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Figure B3. Dependence of the real part of 𝜙 on 𝑀re and 𝜃 when cosΩ = 0. The corresponding imaginary part is in Figure 4.
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