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ABSTRACT

Relativistic magnetic reconnection is a non-ideal plasma process that is a source of non-thermal

particle acceleration in many high-energy astrophysical systems. Particle-in-cell (PIC) methods are

commonly used for simulating reconnection from first principles. While much progress has been made

in understanding the physics of reconnection, especially in 2D, the adoption of advanced algorithms

and numerical techniques for efficiently modeling such systems has been limited. With the GPU-

accelerated PIC code WarpX, we explore the accuracy and potential performance benefits of two

advanced Maxwell solver algorithms: a non-standard finite difference scheme (CKC) and an ultrahigh-

order pseudo-spectral method (PSATD). We find that for the relativistic reconnection problem, CKC

and PSATD qualitatively and quantitatively match the standard Yee-grid finite-difference method.

CKC and PSATD both admit a time step that is 40% longer than Yee, resulting in a ∼40% faster time

to solution for CKC, but no performance benefit for PSATD when using a current deposition scheme

that satisfies Gauss’s law. Relaxing this constraint maintains accuracy and yields a 30% speedup.

Unlike Yee and CKC, PSATD is numerically stable at any time step, allowing for a larger time step

than with the finite-difference methods. We found that increasing the time step 2.4–3 times over the

standard Yee step still yields accurate results, but only translates to modest performance improvements

over CKC due to the current deposition scheme used with PSATD. Further optimization of this scheme

will likely improve the effective performance of PSATD.

1. INTRODUCTION

High-energy radiation is observed from various astro-

physical systems such as pulsar wind nebulae and from

jets in active galactic nuclei (Giannios 2010), X-ray bi-

naries (Tetarenko et al. 2017), and gamma-ray bursts

(Piran 2004; Kumar & Zhang 2015). In particular, pul-

sars produce high-energy gamma ray flares that evolve

too rapidly to be explained by conventional particle ac-

celeration theory (Abdo et al. 2011; Tavani et al. 2011).

Magnetic reconnection is often invoked to explain the

rapid non-thermal particle acceleration and emission in

these systems (Cerutti et al. 2012; Nalewajko et al. 2015;

McKinney & Uzdensky 2012; Petropoulou et al. 2019;

Lyutikov & Uzdensky 2003; Philippov et al. 2019).

During magnetic reconnection, magnetic field energy

is converted to particle kinetic energy in the form of
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both bulk motion and plasma heating. For the highly

magnetized astrophysical systems, particle acceleration

is caused by relativistic magnetic reconnection, where

the un-reconnected upstream plasma has a magnetic
field energy density many times its enthalpy density.

The plasma gains relativistic bulk and thermal veloc-

ities, and the particle energy distributions develop non-

thermal high-energy power law tails. This population of

energized particles are thought to be a source of high-

energy emission.

Particle-in-cell (PIC) is a well-established method for

studying non-thermal plasma acceleration from first

principles (Birdsall & Langdon 1991). Each species in

the plasma is modeled with computational particles,

which generate currents as they move in the domain.

The current is deposited on a spatial grid and is a source

term in the Maxwell equations. An electromagnetic field

solve step (also referred to as a Maxwell solve) calcu-

lates the electric and magnetic fields. The electromag-

netic forces are interpolated to the particle positions,

and their positions and velocities are advanced accord-
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ingly in time. The PIC method therefore fully captures

kinetic particle acceleration, as well as the feedback of

the accelerated plasma onto the fields.

A number of PIC studies have investigated relativis-

tic reconnection for collisionless electron-positron (Zen-

itani & Hoshino 2001, 2007; Cerutti et al. 2012; Sironi

& Spitkovsky 2014; Nalewajko et al. 2015; Werner et al.

2016) and electron-ion (Melzani et al. 2014) plasma in

two dimensions. Long thin current sheets become unsta-

ble to the tearing mode instability, resulting in the for-

mation and mergers of chains of trapped plasma, called

plasmoids. Simulations have also indicated that recon-

nection progresses at a rate of approximately 0.1 in such

systems, normalized to the reconnecting magnetic field

and the Alfvén velocity (Guo et al. 2015; Cassak et al.

2017; Werner et al. 2018). Cerutti et al. (2014) inves-

tigated the dispersion relations of the tearing mode (in

2D) and the drift-kink mode that develops in 3D. The

fastest-growing tearing mode in simulations has been

shown to agree well with analytical expectations (Zen-

itani & Hoshino 2007). Recent work with PIC simula-

tions has focused on the mechanisms underpinning the

onset of reconnection and phases of particle energization

(Guo et al. 2019; Hakobyan et al. 2021; Sironi 2022).

The particle energy spectra that result from reconnec-

tion show hard power laws that extend to high energies

(Werner et al. 2016, 2018; Guo et al. 2015; Hakobyan

et al. 2021; Petropoulou et al. 2019). These spectra can

then be combined with radiation models to predict ob-

servational signatures of reconnection in astrophysical

systems (Cerutti et al. 2013; Nalewajko et al. 2018).

While substantial progress has been made in under-

standing particle acceleration in 2D and, more recently,

3D (e.g. Guo et al. 2015; Zhang et al. 2021; Schoef-

fler et al. 2023), algorithmic and computational inno-

vation in PIC simulations of such systems has been

limited. Virtually all studies employ a finite-difference

time-domain Maxwell solver with a staggered Yee grid

(Yee 1966) (sometimes called FDTD), and only a few

have explored the advantages of GPU acceleration for

astrophysical PIC simulations (Bussmann et al. 2013;

Chien et al. 2020; Xiong et al. 2023). The Yee approach

is second-order in both space and time. For certain

plasma systems, the numerical dispersion inherent to

the method can lead to significant errors. With the Yee

solver using a time step at the Courant limit, the nu-

merical dispersion error is maximal along the axes and

zero along the principal diagonals of the cells. To obtain

solutions with less dispersion, we need alternate solvers,

eventually based on higher-order methods. Cole and

Kärkkäinnen proposed a non-standard finite-difference

approach to mitigate the effects of numerical dispersion

along the principal axes when using the time step at the

Courant limit (Cole 1997, 2002; Kärkkäinen et al. 2006),

which Cowan et al. (2013) extended to non-cubic cells.

This combination is known as the Cole-Kärkkäinnen-

Cowan (CKC) scheme. While numerical dispersion can

be suppressed with CKC along the main axes, it remains

at other angles.

Higher-order methods, including Fourier-based spec-

tral methods, can be used to reduce dispersion even

further. Pseudo-Spectral Analytical Time Domain

(PSATD, Haber et al. 1973; Vay et al. 2013) is one such

method, which enables arbitrary-order accuracy that

can be set at runtime. Since they are finite-difference

schemes, Yee and CKC are only numerically stable when

the time step is below a value set by the Courant limit

(see Section 2.3); on the other hand, PSATD is based

on analytical integration in Fourier space and has no

such constraint. In this paper, we compare the per-

formance and accuracy of the two non-standard ap-

proaches, CKC and PSTAD, for relativistic reconnection

with the widely-adopted Yee scheme. While PSATD

does not have a Courant stability limit on the time step

with regard to the Maxwell solve, a too-large time step

may still reduce the accuracy of the simulation (as parti-

cles traveling close to the speed of light may travel over a

cell size in a single time step). We therefore explore the

performance and accuracy of PSATD with time steps

above the light travel time across a cell.

The PIC algorithm captures reconnection physics ac-

curately from first principles, but can be computa-

tionally expensive, especially when performing high-

resolution simulations with higher-order particle shape

factors. Graphics processing units (GPUs) can offer re-

markable acceleration over conventional CPU architec-

tures for a number of scientific applications, including

PIC (Bussmann et al. 2013; Germaschewski et al. 2016;

Chien et al. 2020; Vay et al. 2020; Myers et al. 2021).

We use the GPU-accelerated electromagnetic PIC code,

WarpX (Vay et al. 2020; Myers et al. 2021). It has excel-

lent full-machine scaling at leadership-class computing

facilities, including Summit and Perlmutter (NVIDIA

GPUs) and the world’s first reported exascale machine,

Frontier (AMD GPUs) (Fedeli, Huebl et al. 2022). The

code is built on the AMReX (Zhang et al. 2019) frame-

work, which supports MPI+X parallelism, where MPI

enables inter-rank communications, and X corresponds

to an interface such as OpenMP, CUDA, HIP, or SYCL

for parallel programming on multi-core CPUs or GPUs.

PIConGPU (Huebl 2019), VPIC 2.0 (Bird et al. 2022),

and the Plasma Simulation code (PSC, Germaschewski

et al. 2016) also employ similar strategies that enable

performance portability and allow scaling to multiple
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GPU nodes. Non-relativistic magnetic reconnection has

been used as a comparison case to validate multiple

GPU-accelerated PIC codes, including PSC, sputniPIC

(Chien et al. 2020) which can make use of a single node

with multiple GPUs, and a CUDA Fortran single-GPU

PIC code (Xiong et al. 2023).

In this paper, we perform first-of-their-kind 2D GPU

simulations of relativistic reconnection with the ad-

vanced Maxwell solvers CKC and PSATD. Since these

have never before been used for relativistic reconnection,

we validate our results by comparing against simulations

that use the conventional Yee solver, which has been well

studied for 2D systems. In particular, we focus on the

evolution of the current sheet structures, the particle-

field energy balance, particle energy spectrum, and re-

connection rate. We investigate the accuracy-based con-

straints on PSATD time steps by parametrizing the time

step relative to the standard Courant limit of the finite-

difference simulations. As with the simulations with dif-

ferent solvers, we compare our results with different time

steps to the baseline Yee simulations. For the same cell

size, the Courant limit for CKC admits a longer time

step than Yee. PSATD is unconditionally stable with

limitations on accuracy that may be imposed by other

time-integration algorithms in the PIC simulation. Both

CKC and PSATD may allow for faster simulations, so we

compare the time to solution for these advanced solvers

and assess the performance gains of a large time step

with PSATD while holding the cell size constant.

The rest of the paper is organized as follows: In Sec-

tion 2 we describe our simulations, including details

about the initial configuration of the current sheets, the

perturbation to trigger reconnection, and the algorith-

mic and numerical parameters. In Section 3, we discuss

the accuracy and performance results from using differ-

ent Maxwell solvers. In Section 4 we present the results

from increasing the time step past the Courant limit

with PSATD. We summarize and discuss future direc-

tions for our work in Section 5.

2. SIMULATION SETUP

2.1. Harris Sheets

The simulations are initialized with two pair-plasma

Harris current sheets (Harris 1962) in equilibrium. This

section describes the configuration, which is summarized

in the diagram in Figure 1. Full details of the derivation

are in Appendix A, and summaries of important param-

eters can be found in Table 1 (scaled units) and Table 4

−Lx

−xc

0

xc

Lx

−Lz Lz

2δ

z

x

B0

B0

B0

Figure 1. Diagram of the equilibrium double Harris
sheet, before the application of the perturbation. The cur-
rent sheets are centered at x = ±xc and have half-widths of
δ in the x-direction. They extend infinitely in the y-z plane.
The current at x = xc (x = −xc) is into (out of) the plane.
The upstream magnetic field has magnitude B0. See equa-
tions 1, 3, and 6 for expressions for the number densities,
particle velocities, and magnetic fields.

(SI units). Input files to replicate the simulations and

analysis are available online1.

Far from the current sheets, in the upstream, the mag-

netic field is B = ±B0ẑ. Its sign changes at the current

sheets. Our principal unit of time will be the inverse up-

stream electron gyrofrequency, ω−1c ≡ me/(eB0), where

c is the speed of light, e is the elementary charge, and

me is the electron mass. Our base unit of length will be

ρc = cω−1c , which is the nominal relativistic Larmor ra-

dius. The current sheets are chosen to have half-width

δ = 12.15 ρc, and extend in the y-z plane. They are

centered at x = ±xc ≡ ±Lx/2, where Lx is the half-

width of the domain in the x-direction, which spans the

interval [−Lx, Lx].

1 https://doi.org/10.5281/zenodo.7847375

https://doi.org/10.5281/zenodo.7847375
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We establish spatial distributions of number density

n(x) and bulk velocity β(x):

n(x) = nb + (nd − nb)

(
sech

x+ xc
δ

+ sech
x− xc
δ

)
(1)

β(x) = β(x)ŷ (2)

= β0

(
sech

x+ xc
δ
− sech

x− xc
δ

)
ŷ. (3)

Each species has number density n(x). Positrons have

velocity β(x), and electrons have velocity −β(x). The

number density in the upstream region is nb, and nd in

the current sheet. The bulk velocity at the center of the

current sheet is β0, and ŷ is the unit vector parallel to

the y-axis. From Ampere’s Law, ∇×B = µ0J :

− ∂

∂x
Bz = 2µ0en(x)β(x)c (4)

where B is the magnetic field, J is the current density,

and µ0 is the vacuum permeability. The factor of 2 in

front of Jy is due to there being two species, positrons

and electrons, that contribute to the total current den-

sity. Except where otherwise indicated, all quantities

are given in the observer frame. We solve equation 4 for

Bz(x) with the boundary conditions

Bz(∞) = −Bz(0) = B0. (5)

This gives

Bz(x) = − 2B0(
π
2 + nd

nb
− 1
)×

(
arctan tanh

x+ xc
2δ

− arctan tanh
x− xc

2δ
− π

4

+
1

2

[
nd
nb
− 1

] [
tanh

x+ xc
δ
− tanh

x− xc
δ
− 1

])
,

(6)

where

B0 = 2µ0enbβ0cδ

(
π

2
+
nd
nb
− 1

)
. (7)

We choose the upstream “cold” magnetization σ ≡
B2

0/(µ0nbmec
2) = 30. This is somewhat different

from the typical relativistic “hot” magnetization σh =

B2
0/(µ0h), with h the relativistic enthalpy density. The

temperature in the upstream will be very mildly rela-

tivistic, with h . 1.5nbmec
2, so the hot magnetization

is around 20, and σ ∼ σh. Based on either definition of

magnetization, reconnection will proceed in the highly

relativistic regime.

Table 1. Physical parameters and symbols common to
all of our simulations. Quantities marked with ∗ are freely
chosen; others are derived.

Parameter Symbol Value

Background (cold) magnetization∗ σ 30

Background temperature∗ θb 0.15

Current sheet half-width∗ δ 12.15 ρc

Current sheet skin depth λe 2.45 ρc

Current sheet overdensity factor∗ nd/nb 5

Current sheet velocity β0 0.22 c

Current sheet temperature θd 1.57

Domain half-width (x)∗ Lx 2195 ρc

Domain half-width (z)∗ Lz 1058 ρc

We choose the current sheet overdensity to be a factor

of five, such that nd = 5nb. The skin depth in the

current sheet is, by definition,

λe ≡
c

ωp
= c

√
meε0
nde2

, (8)

where ωp is the plasma frequency in the current sheet.

From the quantities fixed thus far, λe = 2.45ρc. Com-

bining equation 7 with expressions for σ and λe gives an

expression for the velocity at the center of the current

sheet:

β0 =
1(

π
2 + nd

nb
− 1
) λe

√
nd

nb
σ

2δ
= 0.22 c. (9)

We calculate the temperature profile from pressure

balance in the x-direction in the observer’s (unprimed)

frame:

Pgas(x) + Pmag(x) = C (10)

where C is a constant. The gas pressure Pgas = T xx

where Tµν is the stress-energy tensor. In the fluid

(primed) frame, T ′xx = 2n′θmc2 where θ = kBT/(mec
2)

is the dimensionless temperature, and n′ is the number

density in the fluid frame. The fluid bulk velocity is

in the y direction, so T ′xx = T xx. The observer-frame

number density is n = γn′, where γ = 1/
√

1− β2. Sub-

stituting,

Pgas = T xx = 2nmc2θγ−1 (11)

= 2nmc2θ
√

1− β2. (12)

The magnetic pressure,

Pmag =
B2

2µ0
, (13)
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does not need to be transformed since B is already in

the observer’s frame.

We now have

2nmc2θ
√

1− β2 +
B2

2µ0
= C. (14)

Far from the current sheets,

n = nb (15)

θ = θb = σ/η (16)

β = 0 (17)

B = B0, (18)

where we have chosen η ≡ 200, so θb = 0.15. Solving

for θ(x):

θ(x) =
σ

4

(4 + η)/η − [Bz(x)/B0]2

[n(x)/nb]
√

1− β(x)2
. (19)

The temperature at the center of the current sheet is

calculated by evaluating equation 19 at x = ±xc, giving

θd = 1.57.

Electron-positron pairs are initialized at the start of

the simulation; they are arranged such that they are

uniformly spaced, and their momenta are initialized by

sampling from a Maxwell-Jüttner distribution at the lo-

cal temperature θ (Zenitani 2015).

We note that the setup described here is slightly non-

standard. We have used spatially-varying distributions

of number density (equation 1), bulk velocity (equa-

tion 3), and temperature (equation 19) to represent both

the upstream plasma and current sheets. More com-

monly, the current sheet plasma (with fixed hot tem-

perature θd and drift velocity β0) is overlaid on a do-

main filled with the upstream plasma (temperature θb,

number density nb). Consequently, at initialization, the

plasma at the center of the current sheets will have a

two-temperature distribution. The number density of

the drifting plasma is the only quantity that varies spa-

tially. Ultimately, the resulting current distributions are

very similar, as are the induced magnetic fields, and

both configurations are in equilibrium. The primary dif-

ference is that the values of θd and β0 used here differ

from those of Werner et al. (2018), whose Harris sheets

may otherwise appear identical to ours.

2.2. Perturbation

We add a perturbation to the equilibrium configura-

tion in order to control the location and number of x-

points. We model our perturbation after Werner et al.

(2018), who add a one percent sinusoidal perturbation

to the vector potential, which decreases the magnetic

pressure at the z-axis just outside of each of the current

sheets:

Ay =

∫
Bz(x) dx×[

1− 0.01 cos51
(
π

Lz
z

)
cos2

(
π(x− xc)

Lx

)]
.

(20)

We set the constant of integration equal to zero. In most

studies that use this perturbation, the cosine in z is not

raised to any power. We find that instead raising it to

the 51st power narrows the region being perturbed and

thus reduces the number of initial X-points in our con-

figuration. This helps to ensure a more consistent com-

parison between the simulations. However, after the ini-

tial phases of reconnection, the form of the perturbation

does not affect the results. The exact choice of power is

arbitrary, though must be odd in order to maintain the

sign of the cosine term.

We initialize the fields in the simulation with B =

∇× (Ayŷ). The simulations will therefore all start with

∇ · B = 0, which will be conserved by all numerical

methods used here.

2.3. Particle-in-Cell Simulations

Simulations of relativistic electron-positron pair

plasma reconnection were performed using the electro-

magnetic PIC code WarpX (Vay et al. 2020; Myers et al.

2021). The two-dimensional domain is discretized with

a uniform grid with a cell size of ∆x = ∆z = λe/4. Both

the skin depth in the current sheet and upstream Lar-

mor radius ρc = 1.63∆x will be resolved. Near the end

of the simulation, the expectation is that energized par-

ticles will have Larmor radii of ρc,f = σρc. Since the grid

resolves the smaller initial Larmor scale, it will continue

to resolve it throughout the simulation as it grows.

The simulations were initialized with 64 particles per

species per cell, evenly spaced in both directions. At

this particle density, the overall results are converged,

and statistical noise is not significant. The grid extends

to [−Lx, Lx] × [−Lz, Lz], with Lx = 2195 ρc = 73.2 ρc,f
and Lz = 1058 ρc = 35.3 ρc,f . The simulations have a

resolution of (7168 × 3456) cells, and a total of 3.1 bil-

lion particles. Periodic boundary conditions are applied

on all domain edges. The full domain is ∼70 ρc,f in

the smaller dimension, situating our simulations in the

“large-domain” regime where particle acceleration is ex-

pected to be primarily limited by the plasma properties

rather than the box size (Werner et al. 2016).

The choice of electromagnetic field solver sets the time

step. In this paper, three choices are explored: the stan-

dard finite-difference time-domain method on a Yee grid
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(here called “Yee”) (Yee 1966), a non-standard finite-

difference Cole-Kärkkäinen solver with Cowan coeffi-

cients (CKC) (Cole 1997, 2002; Kärkkäinen et al. 2006;

Cowan et al. 2013), and a pseudo-spectral analytical

time domain (PSATD) method (Haber et al. 1973; Vay

et al. 2013) with a 16th-order stencil (Vincenti & Vay

2016). On our uniform 2D grid with square cells, Yee has

a maximum stable time step ∆tC set by the Courant-

Friedrichs-Lewy (CFL) condition: ∆tC = ∆x/(c
√

2).

CKC admits a larger time step ∆tC = ∆x/c. Unlike the

finite-difference schemes, PSATD does not have a theo-

retical limit on time step since it is unconditionally sta-

ble. In that case, by default, WarpX sets the time step

to be the smallest cell light-crossing time ∆tC = ∆x/c

as a Courant-like time step. For the remainder of the pa-

per, we define the “CFL factor”, simply denoted “CFL”,

as a multiplying factor to the CFL time step limit ∆tC
of a given Maxwell solver, such that the time step of a

simulation is given by ∆t = CFL×∆tC.

Two sets of simulations were performed. The first set

compares the three electromagnetic field solvers with a

time step ∆t = 0.95∆tC (CFL factor of 0.95). The

second studies the effect of time steps that exceed ∆tC
with PSATD. While there is no formal stability limit

on the time step, the accuracy of our simulations can

be expected to deteriorate for CFL factors larger than

some value to be determined. Using a systematic study

of the evolution of the simulations for a range of CFL

factors, we will determine if and in what cases such a

practical time step ceiling exists.

By default, each Maxwell solver is paired with a cur-

rent deposition algorithm that guarantees charge con-

servation. The Esirkepov deposition scheme (Esirkepov

2001) is charge-conserving when used with either Yee

or CKC (Vay et al. 2011). However, Gauss’s law is not

satisfied when Esirkepov deposition is combined with

high-order PSATD. Vay et al. (2013) developed a de-

position scheme (hereafter referred to as “Vay”) that

preserves ∇ · E = ρ/ε0 when used with PSATD. Here,

ρ is the charge density, so we also refer to algorith-

mic combinations that satisfy this equation as “charge-

conserving”. We exclusively use Esirkepov with Yee and

CKC. When not otherwise specified, PSATD is cou-

pled with the Vay deposition. These three combina-

tions form our main comparison. When measuring the

time to solution, we find it instructive to decouple the

performance differences from the Maxwell solvers and

the current deposition schemes. To do so, we compare

the main three simulations against a PSATD simula-

tion with Esirkepov deposition. It happens that for this

problem, PSATD+Esirkepov produces a correct result

despite violating Gauss’s law. Both deposition schemes

use cubic splines for the particles, and once on the grid,

currents are smoothed with a single-pass bilinear filter.

In all cases, the field gather operation also uses cubic

splines. We use a relativistic second-order Boris push to

advance the particle positions (Boris 1970).

3. RESULTS: MAXWELL SOLVERS

3.1. Energy Conversion and Particle Acceleration

The PIC simulations of reconnecting Harris sheets

(described in Section 2) were conducted until reconnec-

tion has completed and magnetic energy is no longer

being converted to particle kinetic energy, at around

t = 8000–9000ω−1c ≈ 4 × (2Lz/c). The qualitative cur-

rent evolution of the Yee simulation is captured in Fig-

ure 2. The other simulations evolve similarly. Shortly af-

ter the start of the simulation, both the top and bottom

current sheets (left and right columns in Figure 2) col-

lapse due to the perturbation (equation 20) that lowers

the magnetic pressure just above and below the current

sheet (second row in Figure 2). Quasi-circular struc-

tures of trapped plasma and current form, called plas-

moids. They inherit their average current from the cur-

rent sheet where they form. Several magnetic X-points

form between the plasmoids in the current sheets. The

plasmoids move outward along the current sheet, and oc-

casionally merge, as highlighted in blue box in the fourth

row of Figure 2. This merger creates a new current sheet

anti-parallel to the bulk current in the plasmoids, and

that extends perpendicularly from the original. This is

the site of ‘secondary reconnection’. At t ≈ 8000ω−1c ,

both primary and secondary reconnection have ended,

leaving a single plasmoid at z ≈ ±Lz (bottom row in

Figure 2).

In all three of the Maxwell solvers studied, magnetic

reconnection proceeds at approximately the same rate

and with the same structures. Figure 3 compares the

plasma structures around the upper current sheet at t =

1470ω−1c for simulations that use the Yee, CKC, and

PSATD solvers. Several small plasmoids have formed in

each current sheet, with a single larger one forming at

the edge of the domain. The exact positions and sizes

of the smaller plasmoids differ between the solvers, but

the current sheet fragments in a similar way in all cases.

Energy conversion and particle acceleration also pro-

ceed similarly with all three solvers. When reconnec-

tion saturates at around t = 6000ω−1c , about 40% of

the energy in electromagnetic fields has been converted

to particle kinetic energy (Figure 4). This includes en-

ergy associated with both thermal and bulk motion. En-

ergy conversion proceeds nearly identically for the first

1800ω−1c , after which there are slight differences be-

tween the numerical methods. This initial interval of
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Figure 2. Time evolution of top (left column) and bottom (right column) current and in-plane magnetic field (black lines) in
the Yee simulation. The small perturbation to the magnetic fields at z = 0 at the initial current sheets leads the current sheet
to collapse at that point, thinning it out and causing reconnection to start. The current sheet fragments into plasmoids, which
move away from the center and merge with one another, causing secondary reconnection (e.g. region marked with blue box).
At the end, there is a single large plasmoid, and reconnection ends. The green box shows the region used to calculate average
inflow velocity in Section 3.2.
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Figure 3. Comparison between current sheet and magnetic
field structure in simulations using different Maxwell solvers.
All snapshots are shown at t = 1470ω−1

c . At this phase, all
simulations show that the current sheet has fragmented into
several small plasmoids, and a single large plasmoid is form-
ing around the edge of the domain. There are small differ-
ences between the current and magnetic field structures that
are due to the nonlinearity of reconnection. The energy con-
version and particle acceleration are similar to one another
(see Figures 4 and 5).
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Figure 4. Evolution of energy balance between elec-
tromagnetic fields (dashed lines) and particles (solid lines)
during reconnection simulations. The y-axis is normalized
to the total energy at the start of the simulation. Results
from different Maxwell solvers are shown in different colors
(Yee: blue, CKC: orange, PSATD+Vay current deposition:
green, PSATD+Esirkepov current deposition: red). The ini-
tial ∼1500ω−1

c of evolution is nearly identical between all
solvers, and after that all simulations show similar evolu-
tion, ending when about 40% of the field energy has been
converted to particle kinetic energy.
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Figure 5. Distribution of particle Lorentz factor γ
weighted by particle energy at the start of the simulation
(gray line) and once reconnection has ended (t = 8500ω−1

c ).
We compare final distributions for the different Maxwell
solvers: Yee (solid blue), CKC (dashed orange), PSATD
with Vay current deposition (dotted green), and PSATD
with Esirkepov current deposition (dotted red). All three of
the Maxwell solvers show very similar particle acceleration,
as does the PSATD+Esirkepov combination. The majority
of the new particle kinetic energy has gone into particles with
γ ∼ σ. The spectral slope varies between 0 and −2 (over-
plotted in black), which roughly matches the ranges found
in prior work (Guo et al. 2015; Werner et al. 2016, 2018).

identical evolution appears to be one of linear growth

of the tearing-mode instability. The amplitudes of the

fastest-growing spatial Fourier modes are approximately

exponential in this interval. At around t = 1800ω−1c ,

the exponential growth stops, suggesting the beginning

of a non-linear phase of evolution. This non-linearity co-

incides with the appearance of small but noticeable dif-

ferences between the energy conversion when using the

different solvers, suggesting that this divergence is a con-

sequence of non-linear evolution. PSATD+Esirkepov

shows a similar result.

All simulations conserve energy to within one part in

2000, which is well within an acceptable level of energy

non-conservation. The CKC simulation loses 4×10−4 of

the initial total energy, slightly more than the 3.5×10−4

and 3 × 10−4 lost by the Yee and PSATD simulations,

respectively.

The three methods and PSATD+Esirkepov also pro-

duce quantitatively similar particle acceleration. The

highest particle γ at the start of the simulation is around

30, while by the end of reconnection at t = 8500ω−1c ,

the fastest particles have γ = 500, over ten times higher.

The majority of the energy in the domain is in particles

with γ . σ. Prior work has found that dN/dγ ∝ γ−α

with α ≈ 1–3 (Guo et al. 2015; Werner et al. 2016, 2018).
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Figure 6. Estimated dimensionless reconnection
rate vin/vout for simulations with Yee (blue), CKC (or-
ange), PSATD with Vay current deposition (green), and
PSATD+Esirkepov (red). The rate evolves similarly in all
cases, peaking at 0.2 and remaining between 0.15 and 0.2
from t = 1000ω−1

c to 2000ω−1
c . This matches the expected

“universal” reconnection rate of 0.1 (Comisso & Bhattachar-
jee 2016; Liu et al. 2017).

This corresponds to power laws with indices between 0

and −2 for the Lorentz factor distribution. Our energy

distributions roughly follow this slope (Figure 5).

3.2. Reconnection rate

The dimensionless reconnection rate

β = − 1

vAB0Lx

dΦ

dt
(21)

parametrizes much of the linear theory of reconnection

(e.g. Werner & Uzdensky 2021). The Alfvén veloc-

ity is vA, and Φ is the unreconnected flux. Directly

measuring the amount of unreconnected flux is diffi-

cult, so we instead use the approximation β ≈ vin/vout,

where vin is the inflow velocity into the reconnection

layer, and vout is the terminal exhaust velocity down-

stream (Cassak et al. 2017; Liu et al. 2022). We cal-

culate vin by averaging |vx| within a region of size

xR × zR = 245 ρc × 980 ρc = 0.11Lx × 0.92Lz centered

on (x, z) = (−xc + xR, 0). This region is marked by the

green rectangle in Figure 2. The measured inflow veloc-

ity is relatively insensitive to the choice of xR and zR.

The measurement is also symmetric across the current

sheet, i.e. moving the box to x = −xc − xR does not

change the measurement. The measurement is also sim-

ilar on the other current sheet. For the sake of simplicity,

we therefore only show reconnection rates on the +x side

of the lower current sheet. The vin average only includes

cells in the upstream, that is, where more than 70% of

Table 2. Performance comparison between solvers.
The walltime per time step is similar for Yee, CKC,
and PSATD+Esirkepov, but 50% more expensive for
PSATD(+Vay). Since PSATD and CKC allow longer time
steps, CKC reaches solution 40% faster, and PSATD(+Vay)
is slightly slower than Yee. PSATD+Esirkepov performs com-
parably to CKC, reflecting that walltime per step is largely
governed by the deposition scheme. These numbers are from
simulations run to a final time of t = 1470ω−1

c with dynamic
load balancing and no I/O on 21 OLCF Summit nodes (126
GPUs).

Algorithmic Time step Walltime Walltime to

Options [ω−1
c ] per step [s] 1470ω−1

c [s]

Yee 0.411 0.077 274.6

CKC 0.581 0.077 193.5

PSATD (+ Vay) 0.581 0.115 290.0

PSATD+Esirkepov 0.581 0.083 209.9

the plasma originated on the same side of the current

sheet. Because reconnection mixes plasma across the

current sheet, this excludes plasmoids and other recon-

nection exhaust. The value of this threshold does not

strongly affect our results.

We measure the outflow velocity, vout, by taking the

median of the 10 highest cell-averaged z-velocities within

δ = 12 ρc of the center of the current sheet. By t =

1000ω−1c , this approaches the expected value of vA =

cσ/
√
σ2 + 1 ≈ c.

This estimate of the reconnection rate for Yee,

PSATD, and CKC simulations is shown in Figure 6. The

ratio vin/vout grows nearly identically in all simulations

from 0 to 0.2 at a time of 1200ω−1c . For the following

1200ω−1c , the estimate of the rate holds relatively con-

stant between 0.15 and 0.2 before dropping at around

t = 2500ω−1c . This coincides with 2Lz/c, the light-

crossing time across the current sheet. After this point,

the steady-state assumption under which β ≈ vin/vout
breaks down as the reconnection fronts interfere with

one another due to the periodic boundary condition.

The measurement of a rate between 0.15 and 0.2

matches the expectation from prior work. Typically,

β for non-relativistic reconnection is observed to be

around 0.1, with higher rates for relativistic reconnec-

tion (Blackman & Field 1994; Guo et al. 2015; Comisso

& Bhattacharjee 2016; Liu et al. 2017).

3.3. Performance

Current sheet structures (Figure 3), energy conver-

sion (Figure 4), particle acceleration (Figure 5), and re-
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connection rate (Figure 6) are all similar between the

Yee, PSATD, and CKC Maxwell solvers. This suggests

that reconnection proceeds similarly in all of our simu-

lations, demonstrating that the results produced by the

PSATD and CKC solvers for the reconnection problem

are comparable to those from the more conventional Yee

solver. The PSATD+Esirkepov simulations also pro-

duce comparable results, despite the violation of Gauss’s

law. Adding this simulation to our performance compar-

ison allows us to decouple the performance effects of the

Maxwell solvers and current deposition schemes.

In these reconnection simulations, the majority of the

runtime (∼60%) is spent in the current deposition rou-

tine, the performance of which is unaffected by the

Maxwell solver. Consequently, the walltime per time

step is approximately the same between the Yee, CKC,

and PSATD+Esirkepov runs. CKC and PSATD permit

a time step that is 40% longer than in Yee, reducing

the time to solution for CKC and PSATD+Esirkepov

by 40% and 30%, respectively, over the baseline Yee

(see Table 2). PSATD+Esirkepov’s steps take 10%

longer than Yee(+Esirkepov) or CKC(+Esirkepov), in-

dicating that PSATD field-solve itself has only a small

impact on the computational performance. However,

PSATD(+Vay) has a 50% longer time per step due to

differences in the current deposition kernels. Thus, in

spite of the longer timestep permitted by the PSATD

field solver, there is only a slight net increase in the

time to solution. The implementation of Esirkepov de-

position in WarpX is highly optimized, so it is possible

that similar optimization in Vay deposition could make

PSATD+Vay a more advantageous combination. This

is an area for future work.

4. RESULTS: LARGE TIME STEPS WITH PSATD

A particular advantage of the PSATD method over

either CKC or Yee is that it is not subject to a Courant

stability criterion. Consequently, we are able to further

increase the time step in the PSATD simulations by rais-

ing the CFL factor above 1. If other algorithmic choices

are kept the same, then the time per time step is unlikely

to change, reducing the time to solution. In this section,

we study a sequence of simulations that are identical ex-

cept for their CFL factors, and therefore time steps. The

CFL factors studied range from a baseline of 0.95 to 2.2.

We refer to simulations in this sequence as CX.X where

‘X.X’ is the CFL factor. C0.95 is the simulation labeled

as ‘PSATD’ in Section 3. As discussed in Section 2, we

exclusively use the Vay current deposition scheme for

the simulations in this sequence.

The statistical properties of the reconnecting plasma

tend to remain the same early in the simulations and for
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Figure 7. Energy balance between electromagnetic field
(dashed lines) and particle kinetic energy (solid lines) in
PSATD simulations of magnetic reconnection with a CFL
factor greater than 1. CFL factors less than 1.7 produce re-
sults that are nearly identical to the benchmark C0.95. For
larger values (i.e. C1.8 in orange and C2.0 and C2.2, not
shown), we see a qualitative increase in both particle and
field energy at progressively earlier times.
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Figure 8. Relative energy conservation throughout re-
connection simulations with CFL factors greater than one.
The baseline C0.95 is shown in solid, dark purple. Up to
C1.6 (dashed blue), energy non-conservation stays relatively
small and comparable to C0.95 (less than one part in 2000).
This suggests that a CFL factor . 1.6 is sufficient to capture
the necessary physics throughout the time interval of inter-
est (t . 9000ω−1

c ). For most of the evolution, C1.65 (solid
light blue) also keeps a low degree of non-conservation, but
larger errors in energy appear at around t = 7000ω−1

c . By
the end of the simulation, its non-conservation is still less
than 1 percent, but growing rapidly. As we further increase
the CFL factor, the rapid increase in energy errors moves
to progressively earlier times, with the runaway occurring
before 2000ω−1

c for C2.2 (red dashed-dotted).
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Figure 9. Distribution of particle energy as a func-
tion of Lorentz factor (γ) mid-reconnection (top panel; t =
2000ω−1

c ) and near the end of simulations (bottom panel;
t = 8500ω−1

c ). The baseline C0.95 appears in solid dark
purple. Larger values of the CFL factor are shown in dashed
and dotted lines. For the values of the CFL factor ≤ 1.7, the
distributions agree closely throughout the simulations, espe-
cially at lower energies (. 100). At high energies, there are
small differences, which cannot be distinguished from sta-
tistical noise. As with energy conservation (Figure 8), the
simulations with the highest CFLs diverge the earliest; for
C2.0 and C2.2 (orange dotted and red dashed), we see dis-
agreement with the baseline simulations at t = 2000ω−1

c ,
while C1.8 (dashed orange) is still in agreement. By the end
of the simulation, C1.8 shows strong disagreement with the
baseline, peaking at γ ∼ 4, rather than close to 1.

lower values of the CFL factor. For values of the CFL

factor . 1.65, the energy conversion from magnetic fields

to particles proceeds almost identically (Figure 7). We

see the same behavior as with the baseline runs (Fig-

ure 4), where during the initial ∼1500ω−1c , about 20%

of the field energy is transferred to the particles. Fol-

lowing that phase, the energy conversion proceeds more

slowly, saturating at a final distribution where about

40% of the energy is in particles and 60% remains in the

fields.

C1.7 matches the simulations with a lower CFL fac-

tor through the main period of interest, until reconnec-

tion saturates at around 7000ω−1c . In the last 1000ω−1c ,

it shows a slight increase in both electromagnetic field

and particle energy, indicating that energy is not con-

served. This is reflected in the relative energy conser-

vation (see Figure 8). Non-conservation starts off small

but increases sharply at around t = 7000ω−1c , reaching

1% by the end of the simulation at t = 9000ω−1c .

The runs that all appear the same in the energy bal-

ance plot (CFL factor ≤ 1.65, Figure 7) show greater

degrees of energy conservation. For runs with a CFL

factor . 1.6, non-conservation is comparable to the

baseline, C0.95. C1.65 also shows low levels of non-

conservation until the very end of the simulation, when

it starts to increase. Left to run further, we expect that

non-conservation would continue to increase like in the

simulations with higher CFL factors. For the duration

of the simulation, C1.65 is within a reasonable tolerance,

only violating energy conservation by less than 1 part in

500.

For simulations with CFL factors ≥ 1.8, significant

energy non-conservation develops during the last part

of reconnection, much earlier than in C1.7. Errors in

the energy have built up significantly by 4000ω−1c for

C1.8, and by 2000ω−1c for both C2.0 and C2.2 (Fig-

ure 8). These are first apparent in the energy conserva-

tion plot, but continue to grow until they show in the

plot of energy conversion (orange line in Figure 7). By

t = 6000ω−1c the field and particle energies are visibly

different from the baseline. C2.0 and C2.2 also show

earlier runaway growth in field and particle energy, but

are omitted from Figure 7 for clarity.

The particle energy spectra further demonstrate

agreement between the simulations with a CFL factor

. 1.7 throughout the majority of the simulation. Figure

9 compares the initial particle energy distributions (grey

lines) with those at t = 2000ω−1c (mid-reconnection)

and t = 8500ω−1c (after reconnection, almost at the

end of the simulation). At the earlier time, all of the

runs we study show close agreement with the baseline

C0.95 out to γ ∼ 100. Those runs with a CFL fac-

tor less than 2 also agree closely with one another at

the highest energies; there are few, if any, particles with

Lorentz factors in excess of 300. C2.0 shows a slight

overabundance of particles with γ ∼ 100, which grows

as the simulation progresses. C2.2 shows an even larger

overabundance of high-energy particles, reaching a max-

imum Lorentz factor of 400, 30% higher than the maxi-

mum achieved by C1.8 at this time. This also coincides

with the beginning of the energy non-conservation seen

in Figure 8. The overabundance of high-energy parti-
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cles may directly cause the initial non-conservation, but

shortly thereafter we also see artificial heating in the cold

upstream. In C0.95 and the runs with lower (≤ 1.7) CFL

factors, the cold upstream plasma appears as a peak at

γ ∼ 1, and remains largely unchanged even at the end of

the simulation. However, in C1.8 and above, this peak

broadens and moves out to γ ∼ 4. This is apparent near

the end of C1.8 (bottom panel, Figure 9). This also oc-

curs in C2.0 and C2.2 beginning shortly after the time

of the top panel; we omit their distributions in the later

panel for the sake of clarity.

At the end of the simulations, the runs with CFL fac-

tors . 1.7 have particle energy distributions that agree

almost exactly for γ < 100. For the highest-energy par-

ticles, there are minor differences, comparable to the

spread seen in the different electromagnetic solvers (see

Figure 5). These highest-energy particles are also the

rarest – there are ∼5000 times fewer particles at γ = 2

as there are at γ = 100, so the higher energies are more

subject to statistical noise.

The non-conservation seen for CFL factors ≥ 1.65 in

Figure 8 appears to be at least partially driven by nu-

merical heating in the upstream region. The exact cause

is uncertain, though we expect it is a direct consequence

of the large CFL factor, rather than the under-resolution

of a physical timescale. Coincidentally, C1.65 has a time

step just over 1ω−1c , meaning that the cyclotron motion

of upstream particles cannot be captured. However, this

heating does not occur if we obtain that same time step

by, for example, doubling the cell size in each direc-

tion and reducing the CFL factor below 1. The effect

is driven by the upstream plasma. Simulations of a do-

main with no current sheet, filled only with upstream

(θ = 0.15, σ = 30) plasma, show the same numerical

heating.

The dimensionless reconnection rate is remarkably

similar for all runs except for C2.2 (Figure 10). As

discussed in Section 3.2, we are primarily interested in

the value of the estimated reconnection rate for t <

2000ω−1c . Within that time interval, the simulations all

show a nearly-identical rise to 0.2, followed by a slight

decline to 0.15 over the following 1000ω−1c . C2.2 largely

follows this pattern, but declines much more quickly

than the other runs at t = 2000ω−1c . This highlights the

robustness of the reconnection rate, and indicates that

it likely should not be used to diagnose whether the sim-

ulations are producing correct results. At t = 2000ω−1c ,

C2.0 and C2.2 both show qualitative disagreement with

the baseline models in the high-energy particle spectra

(Figure 9). However, they agree with baseline models in

the reconnection rate measurement.
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Figure 10. Dimensionless reconnection rate estimated as
the ratio of inflow to outflow velocities in the current sheet
(see Section 3.2). The rate appears to be mostly insensitive
to the CFL factor. This is largely because our estimate of
the reconnection rate is only valid for the first 2000ω−1

c of
the simulations, when energy non-conservation is minimal
(Figure 8). C2.2 is the only run that shows significant devi-
ation in the first 2500ω−1

c of evolution, which coincides with
a runaway in its energy non-conservation.

Of the diagnostics discussed here, energy conserva-

tion is the most sensitive to numerical problems that

arise due to a high CFL factor. Because our simulations

are closed systems, the total energy should remain the

same throughout the evolution, providing a straightfor-

ward ground truth comparison. When increasing the

CFL factor, we find that the particle acceleration and

reconnection rate obtained from those simulations do

not deviate from the baseline until after energy non-

conservation begins to rise rapidly. Even C2.2 agrees

with C0.95 for the first 1500ω−1c of the simulation, be-

fore its non-conservation starts to increase. While par-
ticle energy spectra may match the baseline even after

energy non-conservation begins to run away (e.g. C1.7

at t = 8500ω−1c , bottom panel of Figure 9), we would

not be able to verify that particle acceleration was still

correct in the absence of a known baseline. When in-

creasing the CFL factor, we suggest using a runaway in

energy non-conservation as a heuristic for closed systems

to determine when a simulation result is unreliable.

In Table 3 we summarize the computational perfor-

mance of simulations with CFL factors greater than 1.

Again, we compare against the baseline C0.95 with the

PSATD Maxwell solver. We find that between C0.95

and C2.2, the wall time to simulate a fixed physical time

interval decreases by half. Over this range of CFL fac-

tors, the physical time step increases by a factor of 2.3,
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Table 3. Performance comparison of otherwise
identical simulations with CFL factors between
0.95 and 2.2. different CFL factors for the PSATD
solver and Vay deposition scheme. These num-
bers are from simulations run to a final time of
t = 1470ω−1

c with dynamic load balancing and no
I/O on 21 OLCF Summit nodes (126 GPUs).

CFL Time step Walltime Walltime to

Solver [ω−1
c ] per step [s] 1470ω−1

c [s]

0.95 0.582 0.115 290.0

1.5 0.919 0.126 200.9

1.6 0.978 0.127 190.9

1.65 1.010 0.128 186.4

1.7 1.041 0.128 180.9

1.8 1.102 0.129 172.5

2.0 1.225 0.131 157.2

2.2 1.347 0.131 143.0

and the walltime per time step increases by about 15%.

Most of this walltime difference is because current de-

position is slower (on a per-step basis) at higher CFL

factors. When particles move further per step, they are

more likely to move between cells, and this likely reduces

the cache performance of the deposition routines.

The speedup obtained for a particular application is

limited by how high one can increase the CFL factor

while maintaining a reliable result throughout the time

interval of interest. We expect that the interval over

which energy is conserved for a given CFL factor will

vary based on the problem setup. For the configuration

described here, a CFL factor of 2.2 may be adequate if

we were only interested in the onset of reconnection. In

that case, the time to solution will be 50% of what it is

in C0.95. In this study, we were interested in following

reconnection from its onset until it saturates. For that,

we needed a CFL factor of at most 1.7, and would have

terminated the simulation at around 6500ω−1c . At that

CFL factor, we reach the solution 1.6 times faster than

in the baseline C0.95.

5. CONCLUSIONS

We have performed first-of-their-kind particle-in-cell

simulations of relativistic reconnection with a 16th-order

pseudo-spectral Maxwell solver (PSATD) and a time

step that exceeds the conventional CFL limit. We

find that PSATD and the non-standard finite difference

scheme CKC qualitatively and quantitatively produce

the same results as the standard second-order finite dif-

ference scheme Yee. We have verified that all three

schemes produce the same qualitative plasmoid evolu-

tion, particle-field energy balance, particle acceleration,

and reconnection rate (Figures 3–6). The particle en-

ergy distribution has a power law tail with a spectral

slope α of dN(γ)/dγ ∝ γ−α. We measure α between 1

and 3, as expected (Guo et al. 2015; Werner et al. 2016,

2018). The reconnection rate is between 0.15 and 0.2

for most of the linear phase of the simulation, consis-

tent with expectations for relativistic reconnection.

We also compare the performance of the solvers and

measure efficiency in terms of time to solution. For the

same CFL factor, CKC and PSATD allow for a time

step that is longer than Yee by a factor of
√

2. The

walltime taken per step, though, depends more on the

current deposition scheme than on the Maxwell solver.

The walltime per step is the same in CKC as in Yee

(which both use Esirkepov deposition), giving a ∼40%

speedup in time to solution. High-order PSATD is only

charge-conserving when used with Vay deposition, which

in its current WarpX implementation, is not as opti-

mized as Esirkepov and is therefore more computation-

ally expensive. Thus we decouple the comparison of

the solvers and current deposition methods by perform-

ing an additional PSATD+Esirkepov simulation. In do-

ing so, we verify that PSATD itself is not the primary

cause of the more expensive time step. Despite not being

charge-conserving, PSATD+Esirkepov gives the correct

answer for this problem, and has a walltime per step

only 10% higher than CKC or Yee. In conjunction with

the
√

2-larger time step allowed by PSATD, this pro-

duces a net 30% reduction in time to solution. A time

step in the charge-conserving PSATD+Vay takes 50%

longer than in Yee, so it has a slightly longer time to so-

lution than the most commonly-used charge-conserving

Yee algorithm.

Unlike either of the finite-difference schemes, PSATD

is numerically stable at any time step, even one greater

than the light travel time across a cell. We explore

the accuracy and performance of CFL factors > 1 in

the relativistic reconnection problem. We find that the

timescale of interest sets the maximum allowable time

step parametrized by the CFL factor. Factors ≤ 1.65

conserve energy comparably well to the baseline PSATD

case until t = 8000ω−1c , well past the end of reconnec-

tion. In that interval, they show good agreement in

both particle acceleration (Figure 5) and reconnection

rate (Figure 10). A slightly higher CFL factor of 1.7

still shows good agreement in energy distribution (Fig-

ure 7) and particle acceleration, but begins to show signs

of runaway errors in energy at t ≈ 6500ω−1c , right af-

ter reconnection saturates. This suggests that for this

particular problem and computational setup, the CFL
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factor could reach 1.7 without compromising the accu-

racy of the simulation results during reconnection. As

we progressively increase the time step (up to a CFL

factor of 2.2), runaway energy non-conservation begins

earlier and earlier. In the interval where energy is con-

served, the other diagnostics such as particle energiza-

tion and reconnection rate agree with the baseline case,

suggesting that energy non-conservation is a good di-

agnostic of when the simulation results are reliable for

closed systems with periodic boundary conditions.

The walltime per time step only increases modestly

with CFL factor, about 15% from the baseline C0.95 to

C2.2. The increases in the time step outweigh the in-

creases in walltime per step, reducing the walltime per

physical time by a factor of about two between C0.95

and C2.2, if all other algorithmic choices are unchanged.

Comparing against CKC+Esirkepov, the most efficient

of the CFL=0.95 simulations, we obtain a 25% reduc-

tion in time to solution by adopting a CFL factor of

2.2, and a < 10% reduction by using the CFL factor

of 1.7 that we have determined to be suitable for our

scientific purposes. If a CFL factor below 1.7 were nec-

essary, CKC+Esirkepov would be the most efficient op-

tion due to the faster current deposition. Future work

will include further optimization of the Vay deposition

routine, which would shift the trade-offs to favor the

PSATD+Vay combination in more situations. While

PSATD+Esirkepov was accurate in these simulations,

we do not recommend its use without an additional cur-

rent correction or divergence-cleaning operation to guar-

antee charge conservation.

One of PSATD’s strengths is that it reduces numeri-

cal dispersion that may appear when using Yee or CKC

solvers. While an exploration into the mitigating effect

of the PSATD solver on numerical dispersion in rela-

tivistic plasmas is outside the scope of this paper, it is

indeed a known effect that can contaminate simulations

of astrophysical jets, shocks, and magnetic reconnection

(Godfrey 1974; Melzani et al. 2013; Godfrey & Vay 2014;

Ikeya & Matsumoto 2015; Li et al. 2017; Nishikawa et al.

2021; Tomita et al. 2022). PSATD can therefore provide

new opportunities to study highly-relativistic plasmas,

a numerically challenging regime which characterizes a

number of astrophysical systems.

The numerical and algorithmic innovations lever-

aged in this study can be used to enable larger and

more efficient simulations of astrophysical and labora-

tory plasmas (Ji et al. 2022). Our simulations are also

some of the first GPU-accelerated astrophysical PIC

simulations. As a first step, we have only focused on

two-dimensional systems without additional kinetic and

radiative physics. A third spatial dimension is dynam-

ically important in reconnection because it makes the

current sheet susceptible to an additional instability,

called “drift-kink”, which can suppress particle acceler-

ation (e.g. Cerutti et al. 2014; Sironi & Spitkovsky 2014;

Guo et al. 2015; Werner & Uzdensky 2017). CKC and

PSATD may be especially efficient in 3D because their

time steps are larger than Yee’s by a factor of
√

3, rather

than
√

2 in 2D. In many astrophysical reconnection en-

vironments, synchrotron emission and pair production

play an important role. With WarpX, we will be able to

take advantage of GPU-accelerated exascale computing

resources to perform 3D simulations that include this

radiative physics.
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Table 4. Physical parameters and symbols common to all of
our simulations.

Parameter Symbol Value

Background Larmor radius ρc 4.1 × 10−3 m

Background Larmor frequency ωc 7.3 × 10−10 s−1

Skin depth λe 0.01 m

Current sheet half-width δ 0.05 m

Background magnetization σ 30

Background magnetic field B0 0.42 T

Current sheet number density nd 2.8 × 1017 m−3

Background number density nb 5.6 × 1016 m−3

Current sheet velocity β0 0.22 c

Background temperature θb 0.15

Current sheet temperature θd 1.57

Domain half-width (x) Lx 8.96 m

Domain half-width (z) Lz 4.32 m

A. MAGNETIC FIELD CONFIGURATION

A.1. Equilibrium

In all of our simulations, we fix ρc = 4.1 × 10−3 m, which gives B = 0.42 T and fixes the other dimensional values

in Table 4. These are used in the WarpX simulations, which require SI units. This choice of length scale is largely

arbitrary. In this non-radiative regime, the magnetization determines most of the physics; the rest of the results will

scale accordingly.

From the relationship between ρc and λe and the definition of skin depth, we can calculate number density in the

current sheet nd:

nd =
mε0c

2

e2λ2e
= 2.8× 1017 m−3 (A1)

and in turn background number density nb = 5.6 × 1016 m−3. At this density, a magnetization of 30 requires the

background magnetic field B0 = 0.42 T.
After integrating Ampere’s Law (equation 4),

Bz(x) =− 4µ0enbcβ0δ

[
arctan

(
tanh

(
x+ xc

2δ

))
− arctan

(
tanh

(
x− xc

2δ

))]
+

1

2

(
nd
nb
− 1

)(
tanh

(
x+ xc
δ

)
− tanh

(
x− xc
δ

))
+ C. (A2)

To solve for the constant of integration C, we apply the condition from equation 5:

Bz(∞) = −Bz(0) = B0. (A3)

First taking the limit as x→∞,

lim
x→∞

Bz(x) = −4µ0enbβ0cδ

(
arctan (1)− arctan (1) +

1

2

(
nd
nb
− 1

)
(1− 1)

)
+ C

= C, (A4)
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since limx→∞ tanh(x) = 1. To double precision, tanh(x) = 1 if x ≥ 20, so the following is true if xc/δ ≥ 40, which is

the case in our simulations:

Bz(0) = −4µ0enbβ0cδ

(
arctan (1)− arctan (−1) +

1

2

(
nd
nb
− 1

)
(1− (−1))

)
+ C

= −4µ0enbβ0cδ

(
π

2
+
nd
nb
− 1

)
+ C. (A5)

(A6)

Combining the conditions on Bz as x→∞ and at x = 0 (equation 5):

B0 = lim
x→∞

Bz(x) = C = −Bz(0) (A7)

C = 4µ0enbβ0cδ

(
π

2
+
nd
nb
− 1

)
− C (A8)

C = 2µ0enbβ0cδ

(
π

2
+
nd
nb
− 1

)
. (A9)

This yields the expression for magnetic field in equations 6 and 7:

Bz(x) = − 2B0(
π
2 + nd

nb
− 1
) (arctan

(
tanh

(
x+ xc

2δ

))
− arctan

(
tanh

(
x− xc

2δ

))
− π

4

+
1

2

(
nd
nb
− 1

)(
tanh

(
x+ xc
δ

)
− tanh

(
x− xc
δ

)
− 1

))
, (A10)

with

B0 = 2µ0enbβ0cδ

(
π

2
+
nd
nb
− 1

)
. (A11)

The full expressions for the equilibrium fields and plasma properties are:

B(x)

B0
=

2
π
2 + nd

nb
− 1

[
arctan

(
tanh

(
x− xc

2δ

))
− arctan

(
tanh

(
x+ xc

2δ

))
+
π

4

+
1

2

(
nd
nb
− 1

)(
tanh

(
x− xc
δ

)
− tanh

(
x+ xc
δ

)
+ 1

)]
(A12)

n(x)

nb
= 1 +

(
nd
nb
− 1

)(
sech

(
x+ xc
δ

)
+ sech

(
x− xc
δ

))
(A13)

β(x) =
λe
√
σ

2δ
(
π
2 + nd

nb
− 1
)√nd

nb

(
sech

(
x+ xc
δ

)
− sech

(
x− xc
δ

))
(A14)

θ(x) =
σ

4

(4 + η)/η − [Bz(x)/B0]2

[n(x)/nb]
√

1− β(x)2
. (A15)

A.2. Magnetic Field Perturbation

The magnetic field perturbation is based on the the vector potential (equation 20), which is an integral of Bz(x)

(equation 6). We split B(x) into three types of terms, based on functional form: constants, arctan(tanh) terms, and
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tanh terms. Constants are straightforward to integrate. The integrals of the other two types of terms are:∫
tanh

(
x± xc
δ

)
dx ≡ ζ±(x) = δ log cosh

(
x± xc
δ

)
(A16)∫

arctan tanh

(
x± xc

2δ

)
dx ≡ ξ±(x)

= 2δ

(
x± xc

2δ

)[
arctan

(
exp

(
−x± xc

δ

))
+ arctan

(
tanh

(
x± xc

2δ

))]
+
δi

2

[
Li2

(
−i exp

(
−x± xc

δ

))
− Li2

(
i exp

(
−x± xc

δ

))]
. (A17)

The value of
∫
Bz(x) dx is:∫

Bz(x) dx =
2B0

π
2 + nd

nb
− 1

[
ξ−(x)− ξ+(x) +

π

4
x+

1

2

(
nd
nb
− 1

)
(ζ−(x)− ζ+(x) + x)

]
(A18)

=
2B0

π
2 + nd

nb
− 1

[
π

4
x+ (x− xc)

(
arctan exp

(
−x− xc

δ

)
+ arctan tanh

(
x− xc

2δ

))
− (x+ xc)

(
arctan exp

(
−x+ xc

δ

)
+ arctan tanh

(
x+ xc

2δ

))
+
δi

2

(
Li2

(
−i exp

(
−x− xc

δ

))
− Li2

(
i exp

(
−x− xc

δ

)))
− δi

2

(
Li2

(
−i exp

(
−x+ xc

δ

))
− Li2

(
i exp

(
−x+ xc

δ

)))
+

1

2

(
nd
nb
− 1

)(
δ log cosh

(
x− xc
δ

)
− δ log cosh

(
x+ xc
δ

)
+ x

)]
(A19)

=
2B0

π
2 + nd

nb
− 1

[
π

4
(x− 2xc) +

1

2

(
nd
nb
− 1

)(
δ log cosh

(
x− xc
δ

)
− δ log cosh

(
x+ xc
δ

)
+ x

)
+
δi

2

(
Li2

(
−i exp

(
−x− xc

δ

))
− Li2

(
i exp

(
−x− xc

δ

)))
− δi

2

(
Li2

(
−i exp

(
−x+ xc

δ

))
− Li2

(
i exp

(
−x+ xc

δ

)))]
. (A20)

Equation A20 results from applying the simplification

arctan
(
e−2y

)
+ arctan (tanh(y)) =

π

4
. (A21)

For the purposes of symmetry and preserving the periodic boundary conditions, we have set the constant of integration

equal to zero.

The perturbation to the magnetic field is:

B′ = ∇×Ay − ~B = −∂Ay
∂z

î +
∂Ay
∂x

k̂− ~B (A22)

= −0.01× î

[
51π

Lz
sin

(
π

Lz
z

)
cos50

(
π

Lz
z

)
cos2

(
π(x− xc)

Lx

)∫
Bz(x) dx

]
+

+ 0.01× k̂

[
π

Lx
cos51

(
π

Lz
z

)
sin

(
2π(x− xc)

Lx

)∫
Bz(x) dx− cos51

(
π

Lz
z

)
cos2

(
π(x− xc)

Lx

)
Bz(x)

]
. (A23)
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