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ABSTRACT

We study the linear stability of a planar interface separating two fluids in relative motion, focusing on condi-
tions appropriate for the boundaries of relativistic jets. The jet is magnetically dominated, whereas the ambient
wind is gas-pressure dominated. We derive the most general form of the dispersion relation and provide an
analytical approximation of its solution for an ambient sound speed much smaller than the jet Alfvén speed vA,
as appropriate for realistic systems. The stability properties are chiefly determined by the angle ψ between the
wavevector and the jet magnetic field. For ψ = π/2, magnetic tension plays no role, and our solution resembles
the one of a gas-pressure dominated jet. Here, only sub-Alfvénic jets are unstable (0 < Me ≡ (v/vA) cos θ < 1,
where v is the shear velocity and θ the angle between the velocity and the wavevector). For ψ = 0, the free
energy in the velocity shear needs to overcome the magnetic tension, and only super-Alfvénic jets are unsta-
ble (1 < Me <

√
(1 + Γ2

w)/[1 + (vA/c)2Γ2
w], with Γw the wind adiabatic index). Our results have important

implications for the propagation and emission of relativistic magnetized jets.

1. INTRODUCTION

The Kelvin-Helmholtz instability (KHI) (Von Helmholtz
& Monats 1868; Lord Kelvin 1871)— at the interface of two
fluids in relative motion — is one of the most ubiquitous
and well-studied instabilities in the Universe. Since the pi-
oneering works of Chandrasekhar (1961), the linear theory
of the KHI has been investigated under a variety of condi-
tions (Turland & Scheuer 1976; Blandford & Pringle 1976;
Ferrari et al. 1980; Pu & Kivelson 1983; Kivelson & Zu-
Yin 1984; Bodo et al. 2004; Osmanov et al. 2008; Blumen
et al. 1975; Ferrari et al. 1978; Sharma & Chhajlani 1998;
Prajapati & Chhajlani 2010; Sobacchi & Lyubarsky 2018;
Berlok & Pfrommer 2019; Rowan 2019; Hamlin & New-
man 2013; Bodo et al. 2013, 2016, 2019; Pimentel & Lora-
Clavijo 2019), depending on whether the relative motion is
non-relativistic or ultra-relativistic, whether the two fluids
have comparable or different properties (respectively, “sym-
metric” or “asymmetric” configuration), whether the flow is
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incompressible or compressible, and whether or not the fluids
are magnetized.

The boundaries of relativistic astrophysical jets may be
prone to the KHI, given the relative (generally, ultra-
relativistic) shear velocity between the jet and the ambient
medium (hereafter, the “wind”). In jet boundaries with flow-
aligned magnetic fields, KH vortices can wrap up the field
lines onto themselves, leading to particle acceleration via re-
connection (Rowan 2019; Sironi et al. 2021). Particles pre-
energized by reconnection (e.g., Sironi & Spitkovsky 2014;
Zhang et al. 2021; Sironi 2022) can then experience shear-
driven acceleration (Rieger 2019; Wang et al. 2021, 2023)
— i.e., particles scatter in between regions that move to-
ward each other because of the velocity shear, akin to the
Fermi process in converging flows (Fermi 1949). The KHI
may then constitute a fundamental building block for our un-
derstanding of the origin of radio-emitting electrons in limb-
brightened relativistic jets (e.g., in Cygnus A (Boccardi et al.
2016) and M87 (Walker et al. 2018)), and for the prospects
of shear-driven acceleration at jet boundaries in generating
Ultra High Energy Cosmic Rays.

A study of the KHI in this context needs to account for the
unique properties of the boundaries of relativistic jets. First,
the relative motion between the jet and the wind can be ultra-
relativistic; second, while the wind is likely gas-pressure
dominated, relativistic jets are believed to be magnetically
dominated (Blandford & Znajek 1977), i.e., an asymmetric
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configuration. The linear stability properties of the KHI in
this regime (of relativistic, asymmetric, magnetized flows)
are still unexplored. In this Letter, we derive the most gen-
eral form of the dispersion relation for the KHI at the inter-
face between a magnetized relativistic jet and a gas-pressure-
dominated wind. We also provide an analytical approxima-
tion of its solution for wind sound speeds much smaller than
the jet Alfvén speed, as appropriate for realistic astrophysical
systems.

2. SETUP

We consider a planar vortex-sheet interface in the x–z plane
at y = 0, as shown in Fig. 1. The jet (y > 0) is cold and
magnetized, with field B0 j = (B0x, 0, B0z) lying in the x–z
plane, and Alfvén speed vA. The ambient wind (y < 0) is
gas-pressure supported (with sound speed csw) and has a van-
ishing magnetic field. We use the subscript “j” for the jet and
“w” for the wind. We solve the system in the jet rest frame,
where the wind moves with velocity v = v x̂. We adopt Gaus-
sian units such that c = 4π = 1 and define all velocities in unit
of c.

Figure 1. A 3D schematic diagram of the boundary of the rela-
tivistic jet. The boundary (grey color) is located in the x − z plane.
Above and below the boundary are the magnetically-dominated cold
jet and the unmagnetized gas-pressure-supported ambient wind, re-
spectively. q∥ is the projection of the wavevector q onto the bound-
ary. The jet is at rest and the wind has a relative shear speed of v.
The magnetic field in the jet is B. θ is the angle between q∥ and v
while ψ is the angle between B and q∥.

We describe the flow with the equations of relativistic
magnetohydrodynamics (RMHD) (e.g., Mignone et al. 2018;

Rowan 2019):

∂(ργ)
∂t
+ ∇ · (ργv) = 0 (1a)

∂

∂t
(wγ2v) + ∇ · (wγ2vv) + ∇p = ρeE + J × B (1b)

∂B
∂t
+ ∇ × E = 0 (1c)

∂E
∂t
− ∇ × B = −J (1d)

∂

∂t
(wγ2 − p) + ∇ · (wγ2v) = J · E (1e)

supplemented with the divergence constraints

∇ · E = ρe, ∇ · B = 0 (2)

Here, ρ, ρe, J, v, γ,B,E,w and p are the rest-mass density,
charge density, current density, fluid velocity, Lorentz fac-
tor (γ = 1/

√
1 − v2), magnetic field, electric field, gas en-

thalpy density and pressure, respectively. For an ideal gas
with adiabatic index Γ, the enthalpy can be written as w =
ρ + Γp/(Γ − 1).

We assume a cold and magnetically-dominated jet, with
Alfvén speed v2

A = v2
A,in + v2

A,out, where

vA,in=

√
B2

0x

w0 j+B2
0x+B2

0z

, vA,out=

√√
B2

0z

w0 j+B2
0x+B2

0z

(3)

and the jet enthalpy density is w0 j ≈ ρ0 j for a cold jet. The
wind has negligible magnetic field and is gas-pressure sup-
ported, with sound speed (Mignone et al. 2018)

csw =

√
w0w − ρ0w(∂w0w/∂ρ0w)

(∂w0w/∂p0w) − 1
1

w0w
=

√
Γw

p0w

w0w
(4)

where w0w is the wind enthalpy density. From pressure bal-
ance across the interface,

1
2

(B2
0x + B2

0z) =
c2

sww0w

Γw
⇒

w0w

w0 j
=

1
2

v2
AΓw

(1 − v2
A)c2

sw
, (5)

where Γw is the wind adiabatic index.

3. DISPERSION RELATION

The dispersion relation of surface waves at the interface
can be found from the dispersion relations of body waves in
both the jet and the ambient wind, together with the displace-
ment matching at the interface. The dispersion relations of
body waves in each of the two fluids can be found by lineariz-
ing Eqs. (1), such that the perturbed variables take the form
φ ≈ φ0+φ1, where φ0 and φ1 are the background and the first-
order perturbed variables respectively. The perturbed electric
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field in the jet is E1 = −v1 × B0 j in the ideal MHD limit 1,
where v1 is the perturbed velocity in the jet frame.

In the jet, we consider perturbed variables φ1 of the form
φ1 ∝ ei(q·x−ωt) where q = (k, l j,m) is the complex wavevec-
tor and ω is the complex angular frequency, both defined in
the jet rest frame. Note that Im(ω) > 0 implies that the am-
plitude of the wave grows exponentially, i.e., an instability.
We define the angle θ between the projection of the wavevec-
tor onto the x-z plane and the direction x̂ of the shear flow
velocity such that

cos θ =
k

√
k2 + m2

. (6)

Similarly, we define the angle ψ between the wavevector pro-
jection onto the x−z plane and the jet magnetic field such that

cosψ =
kvA,in + mvA,out

vA
√

k2 + m2
. (7)

For a magnetized cold jet, the dispersion relation of its body
waves describes magnetosonic waves in the cold plasma
limit:

ω[ω2 − (kvA,in + mvA,out)2]

[ω2 − (k2 + l2j + m2)v2
A] = 0 . (8)

In the wind, we consider perturbed variables φ1 of the form
φ1 ∝ ei(q̃·x−ω̃t) where q̃ = (k̃, lw,m) is the complex wavevector
and ω̃ is the complex angular frequency, both defined in the
wind rest frame. For an unmagnetized wind, the dispersion
relation of its body waves reduces to the one of sound waves,
ω̃2 − (k̃2 + l2w + m2)c2

sw = 0. By Lorentz transformations of
ω̃ = γ(ω − kv) and k̃ = γ(k − vω), we obtain

γ2(ω − kv)2 = c2
sw[l2w + m2 + γ2(k − ωv)2] . (9)

Since l j and lw are Lorentz invariant, by solving Eq. (8) and
Eq. (9) for l j and lw respectively, we can construct a Lorentz
invariant ratio:

l2w
l2j
=

v2
A[γ2(ω − kv)2 − c2

sw(m2 + γ2(k − ωv)2)]

c2
sw[ω2 − (k2 + m2)v2

A]
(10)

An independent way of obtaining lw/l j is to simultaneously
solve the linearized RMHD equations, Eqs. (1), together with
the first order pressure balance equation

B0xB1x + B0zB1z = p1w (11)

and the displacement matching condition at the interface

v1y, j

ω
=

v1y,w

γ(ω − kv)
, (12)

1 Resistive effects are likely important in the non-linear stages (Sironi et al.
2021), but not for the linear analysis presented here.

yielding

lw
l j
=

γ2(1 − v2
A)(ω − kv)2

ω2 − (kvA,in + mvA,out)2

w0w

w0 j
. (13)

Using Eq. (5), we can eliminate w0w/w0 j from Eq. (13) and
finally, the dispersion relation for the surface wave at the in-
terface can be obtained by equating Eq. (10) and the square
of Eq. (13):

γ2(ω − kv)2 − c2
sw(m2 + γ2(k − ωv)2)

ω2 − (k2 + m2)v2
A

=
1
4

v2
Aγ

4(ω − kv)4Γ2
w

[ω2 − (kvA,in + mvA,out)2]2c2
sw
. (14)

By introducing the following notations,

ϕ =
ω

vA
√

k2 + m2
, M =

v
vA
, ϵ =

csw

vA
, (15)

Eq. (14) can be rewritten as (Sobacchi & Lyubarsky 2018;
Rowan 2019)

4ϵ2(1 − M2v2
A)(cos2 ψ − ϕ2)2

[ϵ2(1 − 2Mv2
Aϕ cos θ + M2v2

A(cos2 θ − 1 + v2
Aϕ

2))

− (M cos θ − ϕ)2] = (M cos θ − ϕ)4(1 − ϕ2)Γ2
w (16)

The dispersion relation in Eq. (16) holds for arbitrary values
of csw, vA, v, cos θ and cosψ, subject only to the assumptions
of a cold jet and an unmagnetized wind.

Since Eq. (16) is a sextic equation in ϕ, it has a total of six
(generally, complex) roots. However, not all of them may be
acceptable. First, not all of the solutions will satisfy Eq. (13),
since we have introduced spurious roots when squaring it.
Also, by the Sommerfeld radiation condition (Sommerfeld
1912), only outgoing waves should be retained. This requires
Im(lw) < 0 and Im(l j) > 0. The expressions for lw and ly can
be obtained from the derivation of Eq. (13), so the Sommer-
feld condition can be expressed as

Im(lw)= Im
(

(ϕ − M cos θ)2

ϕ

)
< 0 (17a)

Im(l j)= Im
(
ϕ2 − cos2 ψ

ϕ

)
> 0 (17b)

4. ANALYTICAL APPROXIMATION

Since in general a sextic equation has no algebraic roots
(Abel 1826), only approximate solutions of ϕ in Eq. (16) can
be obtained. We first note that the parameters in Eq. (15) are
chosen such that for a realistic wind with csw ≪ vA, we have
ϵ ≪ 1, whereas the other parameters do not depend on csw.
We then expand ϕ as a power series of ϵ of the form ϕ ≈

c0 + c1ϵ + c2ϵ
2, where c0, c1 and c2 are constant with respect

to ϵ and terms higher than ϵ2 are ignored. Substituting this
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into Eq. (16) and comparing coefficients of various powers of
ϵ on both sides, we can find an approximate solution for all
six roots of Eq. (16). If we define an effective Mach number

Me ≡ M cos θ = (v/vA) cos θ , (18)

µ ≡ cos2 ψ − M2
e , and recognize that γ−2 = 1 − M2v2

A, then
the approximate roots that correspond to the unstable modes
can be written as

ϕ(Me<1) = Me + Λ+ϵ − Σ+ϵ
2 , (19)

ϕ(Me>1) = Me − Λ−ϵ + Σ−ϵ
2 , (20)

where

Λ± =

√
−

2 (µ2 ± λ)
γ2(1 − M2

e )Γ2
w
, (21)

λ=
√
µ4 + µ2(1 − M2

e )(1 − M2
e v2

A)Γ2
w . (22)

We find that the first order term Λ±ϵ generally provides a
good approximation of the numerical solution for ϕ. How-
ever, the second order term (which we write explicitly in Ap-
pendix B) is required for identifying the physical solutions
that satisfy Eq. (13) and the Sommerfeld condition. At zeroth
order in ϵ, the real part of the solution (i.e., the phase speed
of unstable modes) is ϕ = Me, or equivalently ω/k = v, i.e.,
unstable modes are purely growing in the wind frame.

In Fig. 2 and Fig. 3, we compare the numerical solution
(left column) of Eq. (16) with our analytical approximation
(right column). We fix csw = 0.005 and consider vA = 0.2 and
0.8, so the assumption csw/vA ≪ 1 of our analytical approx-
imation is well satisfied. The analytical solution for Im(ϕ)
displayed in the figures only employs the first order terms (as
discussed above, we also use the second order terms to check
the Sommerfeld constraint), yet it provides an excellent ap-
proximation of the numerical results, apart from Me = 1. For
Me = 1, the first-order term Λ± of our analytical approxima-
tion diverges. We discuss below this special case.

Our analytical approximation allows to determine the
range of Me where the system is unstable. If λ in Eq. (22)
is imaginary, then also Λ± has nonzero imaginary part. We
then find the values of Me that satisfy λ2 = 0 and obtain the
following unstable bounds: for Me < 1,

cosψ < Me < min
(

cos θ
vA

, 1
)
, (23)

whereas for Me > 1√
ν1 − ν2

2 + 2v2
AΓ

2
w
< Me < min

cos θ
vA

,

√
ν1 + ν2

2 + 2v2
AΓ

2
w

 , (24)

where

ν1 =2 cos2 ψ + (1 + v2
A)Γ2

w (25)

ν2 =

√
(1 − v2

A)2Γ4
w − 4(1 − cos2 ψ)(1 − v2

A cos2 ψ)Γ2
w

Figure 2. Dependence of the instability growth rate Im(ϕ) on θ and
Me, for two choices of vA and two choices of cosψ, as indicated in
the plots. The left and right columns represent the numerical and an-
alytical solutions, respectively. For cosψ = 0, the maximum growth
rate of the analytical solution is capped at its numerical counter-
part to avoid the divergence at Me = 1. In all the panels, Im(ϕ) is
then normalized to its maximum value, which is quoted in the pan-
els themselves. The vertical dotted lines show the analytical upper
bound on Me when cosψ = 1, see Eq. (26). The vertical solid white
lines indicate Me = 1.

Note that the condition Me < cos θ/vA is equivalent to the
obvious requirement v < 1. The condition Me > cosψ
in Eq. (23) can be equivalently cast as v cos θ > vA cosψ,
which has a simple interpretation. The system is unstable
if the projection of the shear velocity onto the direction of
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Figure 3. Dependence of the instability growth rate Im(ϕ) on ψ and
Me, for two choices of vA as indicated in the plots. We fix cos θ = 1.
See the caption of Fig. 2 for further details.

q∥ (which we defined as the projection of the wavevector
q on the x − z plane, see Fig. 1) is larger than the projec-
tion of the Alfvén speed onto the same direction. In other
words, the shear is able to overcome magnetic tension.

Eq. (23) and Eq. (24) fully characterize the instability
boundaries in Fig. 2 and Fig. 3. In particular, the vertical
white dotted lines in the figures illustrate the upper bound in
Eq. (24) for the special case cosψ = 1, which yields

1 < Me < min

cos θ
vA

,

√
1 + Γ2

w

1 + v2
AΓ

2
w

 for cosψ = 1 . (26)

It follows that the unstable range at Me > 1 shrinks for vA →

1, but never disappears as long as vA < 1.

4.1. The special case Me=1

In the case Me = 1, our analytical approximation diverges.
The singular case Me = 1 can be solved by expanding ϕ

with a Puiseux series (Wall 2004; Wolfram Research 2020).
Among the six approximate solutions of ϕ at Me=1, the only
unstable one is

ϕ(Me=1) =1 + (−1)2/3(2ξ)1/3ϵ2/3, (27)

where

ξ =
(cos2 ψ − 1)2(cos2 θ − v2

A)
Γ2

w cos2 θ
. (28)

In Appendix A we demonstrate that this analytical approxi-
mation for the special case Me = 1 is in good agreement with
the numerical solution.

Eq. (27) allows us to identify the range of Me (near unity)
where the diverging growth rate in Eq. (19) should rather be
replaced by Eq. (27). By equating the imaginary parts of
ϕ(Me<1) in Eq. (19) and ϕ(Me=1) in Eq. (27), and solving for
Me, we can obtain the upper bound M∗e for Eq. (19) such that
ϕ(Me<1) ≤ ϕ(Me=1) for Me ∈ [0,M∗e ]. We expect M∗e to be close
to unity, so we assume Me = 1 in µ and λ for Λ+ of Eq. (19).
The resulting expression for M∗e can then be written as

M∗e =
√

1 − 8 · 3−1(2ξ)1/3ϵ2/3 , (29)

where we require ϵ < 33/221/5ξ−1/2 for real M∗e .

4.2. Maximum growth rate

The results presented so far retain the explicit dependence
on the angle θ between the projected wavevector q∥ and the
flow velocity v, and on the angle ψ between q∥ and the mag-
netic field B (see Fig. 1). In practice, for a given Mach num-
ber M = v/vA and a fixed magnetic field orientation (e.g.,
with respect to the shear direction), one can determine the
maximum growth rate, irrespective of the specific value of
θ at which it is attained. This is presented in Fig. 4, where
we show the peak growth rate as a function of M and cosΩ,
where we define

cosΩ =
v · B
|v||B|

(30)

The plot shows that, for most magnetic field orientations,
the peak growth rate is achieved at M ∼ 1. The exception
is the case of fields nearly aligned with the shear velocity,
where magnetic tension pushes the unstable region to higher
M. The region of stability in the upper left corner is delimited
by M = cosΩ (white line), which comes from the instability
condition Me > cosψ in Eq. (23). The range of unstable
Mach numbers extends up to M < 1/vA (vertical white line),
which simply corresponds to the requirement v < 1.

5. COMPARISON TO THE HYDRODYNAMIC CASE

When the unstable mode propagates perpendicularly to the
magnetic field (cosψ = 0), we expect magnetic tension to
have no effect, and the solution should resemble the hydro-
dynamic asymmetric case discussed by Blandford & Pringle
(1976). We demonstrate this by choosing a different parame-
terization in Eq. (16), similar to the one of Eq. (2) in Bland-
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Figure 4. Dependence of the maximum instability growth rate
Im(ϕ) on cosΩ and M ≡ v/vA, for two choices of vA, as indicated
in the plots. The maximum value of Im(ϕ) is taken across all val-
ues of cos θ ∈ [0, 1] for each (M, cosΩ) pair. The left and right
columns represent the numerical and analytical solutions, respec-
tively. In all the panels, Im(ϕ) is then normalized to its maximum
value, which is quoted in the panels themselves. The white lines
indicate M = cosΩ and M = 1/vA.

ford & Pringle (1976), i.e.

ϵ′ =
1
ϵ
=

vA

csw
, ϕ′ =

ϕ

ϵ
=

ω

csw
√

k2 + m2
,

δ′ =
w0w

w∗0 j

c2
sw

v2
A

, η′ = vAϵ = csw,

M′ =
M cos θ

ϵ
=

v
csw

k
√

k2 + m2
, (31)

where w∗0 j is the total enthalpy of the jet, namely the sum of
the gas enthalpy w0 j and the magnetic enthalpy:

w∗0 j = B2
0x + B2

0z + w0 j =
w0 j

1 − v2
A

. (32)

Then the dispersion relation Eq. (16) can be equivalently
written as

(ϕ′2 − cos2 ψ)2[γ2(1 − η′2)(ϕ′ − M′)2 + η′2ϕ′2 − 1]

= γ4δ′2(ϕ′ − M′)4(ϕ′2 − ϵ′2)ϵ′2, (33)

which, by setting cosψ = 0, is exactly the same as Eq. (1) in
Blandford & Pringle (1976), where both the jet and the wind

were assumed to be unmagnetized. We conclude that, even
though our jet is magnetized, in the case cosψ = 0 the in-
stability behaves similarly to the case of a hydrodynamic jet.
Here, the magnetic field provides pressure, but not tension.

6. DISCUSSION AND CONCLUSIONS

We have studied the linear stability properties of the KHI
for relativistic, asymmetric, magnetized flows, with focus
on conditions appropriate for the interface between a mag-
netized relativistic jet and a gas-pressure-dominated wind.
We derive the most general form of the dispersion relation
and provide an analytical approximation of its solution for
ϵ = csw/vA ≪ 1. The stability properties are chiefly de-
termined by the angle ψ between the jet magnetic field and
the wavevector projection onto the jet/wind interface. For
ψ = π/2, magnetic tension plays no role, and our solution re-
sembles the one of a gas-pressure dominated jet. Here, only
sub-Alfvénic jets are unstable (0 < Me ≡ (v/vA) cos θ < 1,
as long as v < 1). For ψ = 0, the velocity shear needs to
overcome the magnetic tension, and only super-Alfvénic jets

are unstable (1 < Me <
√

(1 + Γ2
w)/(1 + v2

AΓ
2
w)). At zeroth

order in ϵ, the phase speed of unstable modes is ω/k = v in
the jet frame, i.e., they are purely growing in the wind frame.

Our analytical results are valuable for both theoretical and
observational studies. They can be easily incorporated into
global MHD simulations of jet launching and propagation, to
identify KH-unstable surfaces (Chatterjee et al. 2020; Sironi
et al. 2021; Wong et al. 2021). On the observational side,
claims have been made that the KHI is observed along Active
Galactic Nuclei (AGN) jets, based on the geometry of the
outflow (Lobanov & Zensus 2001; Issaoun et al. 2022). Our
formulae can place this claim on solid grounds, if estimates
of the field strength and orientation and of the flow velocities
are available. Besides AGNs, our results have implications
for other jetted sources such as, but not limited to, gamma-
ray bursts, tidal disruption events, X-ray binaries, and pulsar
wind nebulae.

We conclude with a few caveats. First, the plane-parallel
approach we employed is applicable only if the jet/wind in-
terface is much narrower than the jet radius (for studies of
surface instabilities in force-free cylindrical jets see, e.g.,
Bodo et al. 2013; Sobacchi & Lyubarsky 2018; Bodo et al.
2016, 2019). Secondly, our local description implicitly as-
sumes that the flow properties do not change as the KHI
grows. Third, we have assumed the jet plasma to be cold,
and the surrounding medium to be unmagnetized. These as-
sumptions will be relaxed in a future work.
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APPENDIX

A. ANALYTICAL APPROXIMATION FOR ME = 1

For the singular case Me = 1, our analytical solutions take the form of the first order Puiseux series. Here we compare the
analytical and numerical solutions. In Fig. 5 and Fig. 6, we plot the instability growth rate for Me = 1, comparing analytical and
numerical solutions. We choose the same parameters as in the figures of the main paper, namely csw = 0.005, and vA = 0.2 or 0.8.
We fix cosψ = 0 for Fig. 5 and cos θ = 1 for Fig. 6. We use solid and dashed lines to represent numerical and analytical solutions,
respectively. The figures show that our analytical solutions in Puiseux series provide a good approximation to the numerical ones
across the entire range of cos θ (for Fig. 5) and cosψ (for Fig. 6).

Figure 5. Dependence of the instability growth rate Im(ϕ) on cos θ for two choices of vA and a fixed value of cosψ = 0 in the singular case
Me = 1. Solid lines represent the numerical solutions while dashed lines represent the analytical solutions obtained by Puiseux series expansion
in the main text.

B. THE SECOND ORDER TERMS

In the main body of the paper, we have looked for an analytical approximation of the form ϕ ≈ c0 + c1ϵ + c2ϵ
2, where c0, c1

and c2 are constant with respect to ϵ and terms higher than ϵ2 are ignored. For the unstable solutions, we find that the first order
term Λ±ϵ generally provides a good approximation of the numerical solution. However, the second order term Σ±ϵ2 is required
for identifying the physical solutions that satisfy the Sommerfeld condition. The explicit expression for Σ± is

Σ± =
Meµ[(1 − M2

e )(cos2 ψ(1 − v2
A) + M2

e (1 + 3v2
A) − 2 − 2M4

e v2
A)Γ2

w + 2(cos2 ψ + M2
e − 2)(µ2 ± λ)]

γ2(1 − M2
e )2Γ2

wλ
(B1)
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Figure 6. Dependence of the instability growth rate Im(ϕ) on cosψ for two choices of vA and a fixed value of cos θ = 1 in the singular case
Me = 1. Solid lines represent the numerical solutions while dashed lines represent the analytical solutions obtained by Puiseux series expansion
in the main text.
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