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ABSTRACT
Maintaining computational load balance is important to the perfor-
mant behavior of codes which operate under a distributed comput-
ing model. This is especially true for GPU architectures, which can
suffer from memory oversubscription if improperly load balanced.
We present enhancements to traditional load balancing approaches
and explicitly target GPU architectures, exploring the resulting
performance. A key component of our enhancements is the intro-
duction of several GPU-amenable strategies for assessing compute
work. These strategies are implemented and benchmarked to find
the most optimal data collection methodology for in-situ assess-
ment of GPU compute work. For the fully kinetic particle-in-cell
code WarpX, which supports MPI+CUDA parallelism, we investi-
gate the performance of the improved dynamic load balancing via a
strong scaling-based performance model and show that, for a laser-
ion acceleration test problem run with up to 6144 GPUs on Summit,
the enhanced dynamic load balancing achieves from 62%–74% (88%
when running on 6 GPUs) of the theoretically predicted maximum
speedup; for the 96-GPU case, we find that dynamic load balancing
improves performance relative to baselines without load balancing
(3.8× speedup) and with static load balancing (1.2× speedup). Our
results provide important insights into dynamic load balancing
and performance assessment, and are particularly relevant in the
context of distributed memory applications ran on GPUs.

CCS CONCEPTS
• Computing methodologies → Distributed algorithms; Par-
allel algorithms; • Applied computing→ Physics.
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1 INTRODUCTION
GPU-accelerated machines entered the TOP500 rankings just over
a decade ago [18]. GPUs offer an effective path to high computa-
tional throughput, and GPU accelerated machines are particularly
of interest, as they are central to the US Exascale, and EuroHPC
Pre-Exascale initiatives. HPC software must be adapted to take full
advantage of heterogeneous systems as parallelism continues to in-
crease and we approach an era of exascale computing in leadership-
class supercomputers. Maintaining equal distribution of compu-
tational load (dynamic load balancing) is crucial for distributed
memory applications to make efficient use of hardware with con-
tinually increasing parallel-compute capabilities [10, 13, 19].

In this paper, we present and investigate GPU-targeted enhance-
ments for in-situ dynamic load balancing. These techniques are
demonstrated in the particle-in-cell (PIC) framework WarpX [21],
which, as a particle-mesh simulation code, models fields via an
Eulerian description and particles via a discretization in Lagrangian
markers. In WarpX, multi-node parallelism is achieved through
spatial domain decomposition, which is supported through the
block-structured framework AMReX [24]. WarpX’s particles are
used to model kinetic phenomena and often cause localized spikes
in memory consumption and compute demand. It is thus likely,
that herein studied scenarios exemplifying realistic geometries of
contemporary research, using highly mobile particles are applicable
to other distributed memory codes. In particular, WarpX models
plasma physics problems, including laser-plasma acceleration and
particle acceleration in astrophysical contexts [21].

The outline of this paper is as follows: In Sec. 2, we introduce
load balancing essentials for particle-mesh codes and present our
dynamic load balancing improvements for GPU systems. In Sec. 3,
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we introduce laser-ion acceleration as a scientifically relevant test
problem with which to explore the performance of our improve-
ments to WarpX’s dynamic load balancing. Next, in Sec. 4, we
discuss the performance of WarpX’s enhanced dynamic load bal-
ancing in the context of a strong scaling-based performance model,
and present weak scaling tests of dynamic load balancing perfor-
mance. We conclude in Sec. 6, with a summary of the generality of
the proposed approach, advantages relative to related works, and
discussion of future work.

2 IN-SITU DEVICE-SIDE DYNAMIC LOAD
BALANCING

In this section, we describe novel methods we have devised for
measuring device-side compute work at runtime and the dynamic
load balancing algorithms used with these measurements.

In Sec. 2.1, we introduce general features of distributed mem-
ory particle-mesh codes that are necessary for a discussion of load
balancing and introduce the terminology used in the software frame-
work AMReX. In Sec. 2.2, we present details of our enhancements
to dynamic load balancing when using GPUs, with a focus on the
challenges of load balancing in a GPU-based code and the GPU-
specific aspects of the load balance algorithm.

2.1 Overview of the Domain Decomposition in
Particle-Mesh Codes

A common motif in parallel particle-mesh codes is to partition the
simulation domain into separate sub-domains, typically contiguous
spatial sub-domains. These sub-domains are interchanged between
compute elements at runtime to achieve an even distribution of
compute work across computational resources. A load-balancing
algorithm is implemented to achieve this even distribution. An ex-
ample domain consisting of 16 (rectilinear) cells decomposed into 4
sub-domains (delimited by solid lines; each sub-domain contains 4
cells) is shown in panel (a) of Fig. 1. A sub-domain usually contains
the field data that describes its contiguous space, as well as asso-
ciated particle data for the particles that lie within the bounds of
that sub-domain. For the example in panel (a) of Fig. 1, the boxes

(b)(a)

0 1

1 0

Distribution MappingCells, Boxes, and Particles

Figure 1: Example domain with 16 cells (delimited by dotted lines) and 4
sub-domains (delimited by solid lines; each sub-domain contains 4 cells) (a);
blue circles represent particles, and are associated with the sub-domain with
which they overlap. A distribution mapping indicates which MPI rank man-
ages each box (b); this example demonstrates load imbalance because rank 0
manages 30 particles, whereas rank 1 manages no particles.

in the upper left and lower right have 18 and 12 associated particles,
respectively.

Within the MPI parallelism model, which is ubiquitous in dis-
tributed memory codes, it is natural to assign each sub-domain
to one exclusive MPI rank; for MPI+𝑋 parallelism (where 𝑋 cor-
responds to an accelerator platform, e.g., CUDA), the ranks corre-
spond to unique GPUs.

Our study is designed as a general improvement in AMReX,
a performance-portable, block-structured framework which pro-
vides infrastructure for mesh-based simulations, with capability to
support particles [24]. For the remainder of this paper, we will use
AMReX terminology, as it is consistent with our study and the nam-
ing convention is highly descriptive. In AMReX, a ‘sub-domain’ is
a rectilinear region of cells, defined by a box. A distribution mapping
describes the current MPI process ownership of field and particle
data associated with each box; since in our study we use one MPI
rank per GPU, the distribution mapping also maps the GPU own-
ership of each box. This consists of a box-sized vector containing
the MPI rank (equivalently, GPU ID) to which each box is assigned.
For the example in panel (a) of Fig. 1, one possible distribution
mapping is shown in panel (b); the boxes (including both their cells
and particles) in the upper left and lower right belong to rank 0
(also GPU 0), and the boxes in the upper right and lower left belong
to rank 1 (also GPU 1).

Our load-balancing strategy is tested in WarpX, a particle-mesh
application, implemented on top of AMReX. Cells are updated
in self-consistent, explicit time steps solving Maxwell’s equations.
Throughout all cells, representative particle markers (weighted par-
ticles) move according to the Lorentz-force and in turn modify fields
through deposited, charged currents [3]. When ran on systems with
accelerators, locally assigned boxes of particles and structured field
(cell) data are stored persistently in device memory. Implementing
advanced, numerical schemes for those operations, single-source
kernels consistently accelerate the whole application.

Load balancing in WarpX consists of a global update of the distri-
bution mapping across all MPI ranks, and redistribution of particle
and cell data in accordance with the new distribution mapping
(this is further discussed in the next section, Sec. 2.2). The example
configuration in Fig. 1 demonstrates particle load imbalance; while
ranks 0 and 1 each manage 8 cells, rank 0 manages 30 particles and
rank 1 manages no particles.

2.2 Load Balancing Strategy
A basic outline for dynamic load balancing in a distributed memory
particle-mesh code (representative of what we use in the present
work) is sketched in Lis. 2.1; this resides within the main time-
stepping loop in WarpX.

The frequency of the load balancing calculation is controlled by
a user-selected load balance interval (line 1). Computational costs
corresponding to each box are gathered from all GPUs to the root
process, so that the root process has a global view of the current
GPU ownership and cost for each box over the full simulation
domain. With this information, the root process computes a load
balanced distribution mapping and the corresponding load balance
efficiency 𝐸 for the old and new mappings (lines 9–11).
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Listing 2.1: Dynamic load balancing routine

1 if (step % loadBalanceInterval == 0) {
2 // With measured cost per GPU, compute
3 // new `distribution mapping` (DM) and
4 // write current and proposed load
5 // balance efficiencies; the new DM may
6 // be computed according to `knapsack`
7 // or `SFC` policies
8 float currEff = 0.0, propEff = 0.0;
9 DistMapping newDM = makeNewDM(costs,
10 currEff,
11 propEff);
12
13 // Load balanced distribution mapping
14 // is now up-to-date only on root;
15 // global update only if there is
16 // enough improvement
17 bool globUpdateDM = false;
18 if (myRank == root) {
19 globUpdateDM = (propEff
20 > 1.1*currEff);
21 }
22
23 bcast(&globUpdateDM, 1, root);
24 if (globUpdateDM) {
25 bcast(&newDM[0],
26 newDM.size(),
27 root);
28 // Remake grids and redistribute
29 // particles according to new DM
30 updateDistributionMapping(newDM);
31 }
32 }

This load balance efficiency is defined as:

𝐸 ≡ 𝑐avg/𝑐max (1)

where 𝑐avg and 𝑐max are the average and maximum costs, respec-
tively, over all GPUs. The cost per GPU is taken as the sum of costs
over all boxes managed by it; an efficiency of 1 indicates a perfectly
balanced distribution. By default, the new distribution mapping will
not be broadcast to all GPUs (line 17), but if the proposed efficiency
exceeds the current efficiency by a user-selected amount (lines 18–
21), the new distribution is communicated to all GPUs and updated
(lines 23–31). Update of the distribution mapping includes shuffling
ownership of boxes as well as redistributing particles to GPUs (line
30), and when ran is the most expensive step of the load balancing
routine (this is the case for simulations we present in Sec. 3.3; re-
distribution of box and particle data typically constitutes ≳99.7%
of the time required to load balance). Therefore, only redistribut-
ing in cases that will yield a substantial improvement is critical to
achieving an optimal load balancing implementation. We control
this with a hyperparameter for the required improvement to the
load balance efficiency 𝐸, i.e. a value that must be met or exceeded
in order for the proposed distribution mapping to be communicated
and updated (the performance impact of this hyperparameter is
discussed in Sec. 3.3).

In distributing costs equally over all GPUs (i.e., computing a new
distribution mapping; Lis. 2.1, lines 9–11), a variety of strategies
have been developed [2, 10, 13, 19]. Two of the most common
algorithms are knapsack, which assigns sub-domains to GPUs such
that the corresponding computational costs are spread as equally
as possible over all GPUs, and space-filling curve, in which sub-
domains are enumerated with a Morton Z-order space-filling curve

and the resultant ordering is partitioned so that costs are distributed
as equally as possible among GPUs. For our simulations of laser-ion
acceleration, the performance impact of these algorithms when
running on GPUs is discussed in Sec. 3.3.

Measuring computational cost offers a unique challenge with
GPUs, as GPUs leverage asynchronous compute [12]. For this rea-
son, timing sections of code with CPU timers will not yield a useful
load balancing metric [8]. To address this challenge, we imple-
mented three different GPU-amenable cost measurement strategies
to estimate the compute work associated with a box, (Heuristic,
GPU clock, and CUPTI ), which we summarize below:

• Heuristic: Compute work is estimated as a weighted linear
sum of the number of particles and cells per box. Note that
the optimal choice of weights may vary depending on hard-
ware, choice of field solver, and the interpolation order of
particle shapes.

• GPU clock: The device clock() function is used to measure
thread execution time, which is accumulated using GPU
atomic add operations; the procedure is shown schematically
in Fig. 2 (a). Tomitigate latency, thread times are accumulated
in shared memory before their sum is transferred to global
memory. With this GPU clock-based timer, we measure the
thread-summed execution time of a compute-intensive ker-
nel, which serves as a proxy for the compute work associated
with a box. For the laser-ion acceleration problem discussed
in Sec. 3, current deposition typically accounts for 50% of
the total walltime, with the remaining walltime dominated
by communication routines, thus we take the time spent in
current deposition as representative of the compute work
that should be considered during load balance.

• CUPTI: With the CUDA Profiling Tools Interface (CUPTI)
API [6], we constructed a timer capable of accessing kernel
execution times on-the-fly; the CUPTI-based timing strategy
is summarized in Fig. 2 (panel (b)). CUPTI enables collection
of kernel activity records— data structures that contain ker-
nel information including the absolute start and end times
of the kernel. Registered callback functions, which handle
the request and delivery of buffers used to store activity
records, are activated by GPU activity; when the buffer re-
turn is complete, the activity records stored therein can be
used to compute kernel duration. With this CUPTI-based
kernel timer, we measure the duration of the current deposi-
tion kernel and use it as a proxy for the computational cost
associated with a box.

The heuristic method has been used frequently in particle-mesh
codes which run on CPU [4, 7, 9, 13, 15, 17, 23], and transfers readily
to particle-mesh codes on GPU [5, 10, 19], given the user has tuned
appropriately the particle and cell weights. However, as mentioned
above, the optimal choice of weights can vary depending on algo-
rithmic choices and hardware, which limits the general applicability
of heuristic cost measurement. The need for careful tuning by the
user can be eliminated with an on-the-fly measurement technique
such as GPU clock or CUPTI mentioned above; to the authors’
knowledge, the present work represents the first implementation
and application of such techniques for dynamic load balancing in a
particle-mesh code running at scale on GPUs.
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GPU Stream 2
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clock() Work clock() cost₃ += Δt₃

clock() Work clock() cost₁ += Δt₁
clock() Work clock() cost₂ += Δt₂

Register

callbacks

Callback: 
store Δt₁

Callback: 
store Δt₂

Callback: 
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Time

GPU Stream 2
Stream 1
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…

(b)

CPU

Work
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Work

Launch 
kernels

Δt₃
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Δt₁

Δt₃
Δt₂

Δt₁

Timing with GPU Clock

cost₁ += Δt₁ 
cost₂ += Δt₂ 
cost₃ += Δt₃

Figure 2: Schematic summary of GPU clock (a) and CUPTI (b) methods for
assessing GPU compute work. The diagram in (a) is only representative, in
that the actual measured quantity in our implementation is summed thread
execution time, rather than kernel execution time; with CUPTI (b), we do
measure kernel times as a proxy for GPU compute.

3 DYNAMIC LOAD BALANCING TEST
PROBLEM: 2D LASER-ION ACCELERATION

In this section, we discuss the performance of WarpX’s improved
dynamic load balancing in simulations of laser-ion acceleration
physics. In Sec. 3.1, we describe the problem setup and initial con-
ditions of our simulations. In Sec. 3.2, we show the time evolution
of load balancing in our test problem (i.e., the time evolution of
cost per computational grid, and the time dependence of load bal-
ance efficiency). Lastly, in Sec. 3.3, we present the load balancing
performance dependence on several algorithm choices and numer-
ical parameters which control aspects of the load balancing. The
simulations presented in this section were run on the Oak Ridge
Leadership Computing Facility (OLCF) Summit system (which con-
sists of IBM AC922 server nodes, two IBM Power9 CPUs and six
NVIDIA V100 GPUs per node).

3.1 Laser-Ion Acceleration: Problem Setup
Laser-ion acceleration was chosen to study our dynamic load bal-
ancing strategy because of its substantial spatial variations of both
fields and particle distributions over the dynamic timescales. Our
simulations of laser-ion acceleration are 2D3V, that is to say the
simulation plane (𝑧𝑥) is two-dimensional in space, yet we track
all three components of the electromagnetic field and particle mo-
menta. The problem setup we describe here is prototypical for
scenarios detailed in Refs. [11, 14].

The initial conditions of our problem are shown in Fig. 3, panel
(a). The panel shows a subset of the full computational domain,
−15 `m ≤ 𝑥 ≤ 15 `m and −10 `m ≤ 𝑧 ≤ 20 `m.

A dense target of electrons and protons initially fills a circular
region of radius 5 `m (core) + 2 `m (slope) centered at 𝑥 = 𝑧 = 0 `m.
The initial number density of electrons and protons in the target
is 𝑛i0 = 𝑛e0 ≡ 𝑛0 = 8.7 × 1027 m−3 (5× the critical plasma density),
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Figure 3: Time evolution of laser-ion acceleration problem (described in
Sec. 3.1) for number of particles per cell (a)–(d), heuristic cost (e)–(h), GPU
clock-measured cost (i)–(l), and CUPTI-measured cost (m)–(p); the computa-
tional cost assignment strategies are described in Sec. 2. The snapshots are
shown at 𝑡 = {3, 51, 103, 147} fs for columns 1–4, respectively. Gray gridlines
in panels (e)–(p) denote the domain decomposition into boxes (see Sec. 2.1).

and cuts off exponentially near the edge of the target over a scale
length 𝐿 = 50 nm. Ions are initialized at rest, whereas electrons
are initialized with Gaussian-distributed momenta; the standard
deviations of the electron momenta distributions along 𝑥 and 𝑧 are
both 0.01𝑚e𝑐 (𝑚e is the electron mass and 𝑐 is the speed of light).
An ultrashort laser pulse with a Gaussian profile propagates from
𝑧 = −9 `m along 𝑧 toward the target starting at 𝑡 = 0 s. Physical
parameters of the laser pulse are as follows: the peak amplitude of
the laser field is 1014 V/m (𝑎0 = 25), the laser’s polarization vector
is along 𝑥 , the wavelength of the laser pulse is _0 = 800 nm, the
laser beam profile waist (i.e., the lateral distance to the laser peak
amplitude at which the field amplitude decays by a factor of 𝑒) is
4 `m, the laser pulse duration (i.e., the time required for the laser
pulse peak amplitude to decay by a factor of 𝑒) is 10 fs, and the
laser pulse is initialized over 30 fs and focused at the center of the
target. The simulations (unless otherwise noted) are evolved up
to 150 fs, which corresponds to around 4100 simulation timesteps;
this timescale is long enough to cover the highly kinetic part of
the simulated laser-matter interaction physics, and as a result is an
appropriate timescale for testing dynamic load balancing.

In addition to the geometry and physical parameters of our
setup, detailed above, we specify several numerical parameters.
The simulation domain (𝐿𝑧 , 𝐿𝑥 ) = (30 `m, 30 `m) (unless other-
wise noted) is resolved with (𝑁𝑧 , 𝑁𝑥 ) = (1920, 1920) cells; the cell
size is 𝑑𝑧 = 𝑑𝑥 = 0.0195 _0 = 0.274 𝑐/𝜔pe, where 𝑐/𝜔pe is the elec-

tron skin depth, and 𝜔pe ≡
√︃
𝑛0𝑞2e/(𝜖0𝑚e) is the electron plasma

frequency; 𝑞e is the electron fundamental charge and 𝜖0 is the per-
mittivity of free space. For parallel computation of the problem,
the domain is decomposed into boxes of size 𝑀𝑧 = 𝑀𝑥 = 64 cells.
To ensure numerical stability of the finite-difference PIC solver,
the time resolution of our simulations is Δ𝑡 = 0.193 𝜔−1

pe , which is
4
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less than that required by the Courant-Friedrichs-Lewy condition
by a factor of 0.999. Lastly, we use 𝑛ppc0 = 900 macro-particles
per cell for each particle species, and third-order particle shapes.
With this choice of numerical parameters, the overall time spent
in compute-dominated routines is typically about half of the simu-
lation’s walltime. For our fiducial simulation parameters (detailed
above), we use 16 nodes (96 GPUs). For parallel communications,
we use the Message Passing Interface (IBM Spectrum MPI, version
10.3), with one MPI rank per GPU [1].

For completeness, the software, environment, WarpX input files,
output data, and analysis tools used to produce and analyze the
simulations presented in this paper are archived in Ref. [16].

3.2 Load Balance: Time Evolution
As the ultrahigh-intensity laser pulse interacts with the dense par-
ticle target, electrons respond quickly relative to the more massive
hydrogen ions, and penetrate through the solid target. The different
response times of electrons and hydrogen ions to the incident laser
pulse generates strong electric fields, which can in turn accelerate
ions to high energies. Throughout this process, a strong kick of the
target front by the incident laser results in substantial changes to
the spatial density profile as particles are transported through the
target; the time evolution for the range 3–147 fs of the spatial profile
of particles per cell is shown in Fig. 3 (panels (a)–(d)). The macro-
particle number is intentionally kept constant in the lower-density,
exponential plasma slope around the target, visible in later steps as
a ‘ring,’ for adequate modeling of laser-absorption. Relative to the
initial number of particles per cell in the target (2 × 𝑛ppc0 = 1800
particles per cell), the density can increase by a factor of 25 during
the simulation (this is true at 𝑡 = 51 fs, shown in panel (b), but note
that the color bar range is truncated).

As discussed in Sec. 2.2, particle number density correlates posi-
tively with the true compute work (cost) associated with a box of
the domain. Time variation in the spatial profile of particle number
density then implies that the true computational costs, as well as the
estimated approximations for each box via the heuristic, GPU clock,
and CUPTI proxy schemes (discussed in Sec. 2.2), will change as
the simulation progresses. The time evolution of the computational
cost per box is shown in Fig. 3, rows 2–4, for the three different cost
assignment schemes; heuristic (panels (e)–(h)), GPU clock (panels
(i)–(l)), and CUPTI (panels (m)–(p)); gray gridlines delimit boxes
which comprise the simulation domain. Costs along each row have
been normalized to the maximum cost per box over the four tempo-
ral. Comparing the snapshots of costs between schemes confirms
they are consistent with one another.

As discussed in Sec. 2.2, different policies are possible when
determining the updated mapping from GPU ownership to boxes;
we explore two commonly used policies: knapsack and Morton
Z-order space-filling curve (from here on, SFC). In Fig. 4, we show
visualizations of distribution mappings at 𝑡 = 103 fs, computed
according to either knapsack or space-filling curve methods (panels
(a) and (b), respectively). 96 different colors (shown in the colorbar)
correspond to the 96 different GPUs on which this simulation was
run (for additional clarity, white GPU ID numbers are printed in
the center of each box). For comparison to the underlying particle
distribution, a transparent overlay of the number of particles per
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Figure 4: Comparison of distribution mappings that result from knapsack
(a) and space-filling curve (b) policies (described in Sec. 2), for the laser-ion
acceleration problem described in Sec. 3.1; a transparent overlay shows the
number of particles per cell at physical time 𝑡 = 103 fs (this corresponds to
panel (c) of Fig. 3).

cell at 𝑡 = 103 fs (this corresponds to panel (c) in Fig. 3) has been
added to the figure.

The visualizations of distribution mappings match intuition
about the knapsack (panel (a)) and SFC (panel (b)) algorithms. Knap-
sack calculates its distributed load by grouping boxes as efficiently
as possible without any consideration of the spatial location of the
boxes; as a result, GPU ownership of boxes appears to be scattered
randomly. For SFC, boxes are grouped with the constraint that GPU
ownership is contiguous along a Z-order curve threading the boxes;
as a result, the distribution mapping computed according to the
SFC algorithm shows relatively large patches placed on a single
GPU in regions with relatively few particles per cell, and smaller
patches in more densely packed regions. These small groupings
appear roughly in the circular region of radius 7 `m centered at
(𝑧, 𝑥) = (0 `m, 0 `m). Even though the distribution mappings re-
sulting from the knapsack and SFC policies appear to be strikingly
different, the load balance efficiencies (see Eq. (1)) attained at this
snapshot (𝑡 = 103 fs) are similar; about 61% and 56% for knapsack
and SFC, respectively. With the spatial constraint of the SFC algo-
rithm, the load balance efficiency that is possible with SFC can be
no greater than that obtained with knapsack; comparison between
SFC and knapsack is further discussed in Sec. 3.3.

We show in Fig. 5 a comparison of the time evolution of load
balance efficiency (see Eq. (1)) for a simulation with no load balanc-
ing (dot-dashed green curve), static load balancing (i.e., the load
balancing routine is called once early on in the simulation; dotted
red curve), and dynamic load balancing (i.e., the load balancing
routine is called periodically as the simulation progresses; solid
blue curve); the gray region above the line 𝑦 = 1 is not achievable
because the load balance efficiency is, by construction, a number on
the interval [0, 1] (see Eq. (1)). For the run with dynamic load bal-
ancing, the load balancing routine is called once every 10 timesteps
(note, as described in Sec. 2.2, this does not necessarily mean that
the distribution mapping is updated every 10 timesteps; a proposed
distribution mapping is computed at each load balancing step, and
is adopted only if it would improve the current load balance ef-
ficiency by a prescribed amount. In our fiducial simulations and
the dynamic load balancing case shown in Fig. 5, the proposed
distribution is adopted only if the load balance efficiency is at least
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Figure 5: Time evolution of load balance efficiency for simulations with dy-
namic load balancing (solid blue), with static load balancing (dotted red), and
without load balancing (dot-dashed green), for laser-ion acceleration problem
similar to that described in Sec. 3.1 (these simulations run on 4 nodes instead
of our fiducial 16 nodes, and are time-evolved up to physical time 𝑡 = 1000 fs,
as opposed to our fiducial 150 fs). The dynamic and static load balancing runs
use knapsack distribution mapping.

a 10% improvement relative to the current load balance efficiency).
The distribution mappings for the runs with static and dynamic
load balancing are computed according to the knapsack policy.

The simulations shown in Fig. 5 are similar to the fiducial sim-
ulation described in Sec. 3.1, but the simulations run for longer
physical time (up to 𝑡 = 1000 fs) and have been weak scaled from
16 nodes (96 GPUs) to 4 nodes (24 GPUs). Correspondingly, the grid
size is smaller, (𝑁𝑧 , 𝑁𝑥 ) = (960, 960); at this resolution, the physical
duration of the simulation corresponds to about 13600 timesteps.

It is important to highlight some critical results from Fig. 5. Static
load balancing shows a significant improvement in overall load bal-
ance efficiency (and correspondingly, the simulation’s walltime)
compared to the baseline case without load balancing. The average
load balance efficiency over the duration of the simulation is 53%
with static load balancing and 21% without; static load balancing re-
sults in a 2.1× speedup, which is similar to the ratio of average load
balance efficiencies. Dynamic load balancing can yield even greater
load balance efficiency throughout the duration of the simulation;
with dynamic load balancing, the average load balance efficiency
is 84%, and yields a 2.9× speedup relative to the baseline without
load balancing, 1.3× speedup relative to static load balancing.

Another critical result from Fig. 5 is that the dynamic load bal-
ancing routine (blue curve), which for this case is called every
10 timesteps, updates the distribution mapping only when it will
result in a sufficient improvement to the current load balance effi-
ciency (as described in Sec. 3.3, our tuned threshold is 10%). This
feature can be seen clearly at, e.g., step = 10000, where the load
balance efficiency increases from 91% to 100%. Early on in the sim-
ulation (step ≲ 3000), the laser-ion acceleration problem shows
rapid changes in the spatial profile of particle number density (and
correspondingly, the spatial profile of computational cost), but at
later times in the simulation (step ≳ 3000), the changes occur over
longer timescales; these temporal changes are well captured by our
dynamic routine.

By requiring that the updated distribution mapping improves
the current efficiency by a threshold amount, our implementation
avoids the penalty of costly communication of data among ranks
(this communication time, when present, dominates the residual
time spent in the load balancing routine) when doing so would not
substantially improve the load balance.

3.3 Parameter Dependence of Dynamic Load
Balancing Performance

The performance of typical load balancing implementation depends
on several numerical parameters and choices of algorithms, as
discussed in Sec. 2.2. Since algorithmic hyperparameters are hard to
tune for domain scientists that model a concrete dynamic setup, we
investigate multiple approaches both with respect to load balance
efficiency, performance as well as minimization of the need for
manual user intervention.

In Fig. 6, we present the performance dependence with respect to
these parameters and choices of algorithm for our fiducial 16 node
simulation; in particular, we show the performance dependence
on the choice of computational cost assignment method (heuristic,
GPU clock, or CUPTI), the policy used to compute the distribution
mapping (knapsack or SFC), the average number of boxes per GPU
(150, 38, 9, or 2; for our fiducial domain size (𝑁𝑧 , 𝑁𝑥 ) = (1920, 1920),
this is equivalent to varying the box size𝑀𝑥 = 16, 32, 64, or 128 cells,
respectively), the load balance interval (i.e., the inverse of the fre-
quency with which we call the load balancing routine: once every 1,
3, 10, 30, 100, or 300 steps), and the load balance efficiency improve-
ment threshold (i.e., the improvement to load balance efficiency
required for a proposed distribution mapping to be communicated
and updated: 5%, 10%, or 15%). For each parameter or algorithm scan,
we fix those not under examination to the optimal selection from
among those shown in panel (a) (for example, for each simulation
represented by the first group of bars showing dependence on cost
assignment method, we use knapsack, 9 boxes per GPU, load bal-
ance interval of 10 steps, and load balance efficiency improvement
threshold of 10%).

The height of each bar indicates the simulation’s walltime in
seconds, excluding initialization time (≈ 1 s). Error bars show the
spread between minimum and maximum across MPI ranks of the
time spent in the most compute-intensive kernel (which includes
current deposition and particle push routines); smaller error bars
indicate smaller spread between minimum and maximum across
MPI ranks of the time spent in current deposition and particle push,
and thus correspond to a more balanced load, whereas larger error
bars indicate a larger spread, and correspond to a less balanced load.
Note that the hatched bars in Fig. 6 represent the same simulation;
this simulation has the highest speedup relative to baseline, with the
following hyperparameters: heuristic cost assignment, knapsack
distribution mapping, 9 boxes per GPU, load balance interval of 10
steps, and load balance efficiency improvement threshold of 10%.

The first group of bars (blue) in panel (a) of Fig. 6 shows a com-
parison between the different cost assignment schemes described
in Sec. 2.2, namely heuristic, GPU clock, and CUPTI. Heuristics
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Figure 6: For the laser-ion acceleration problem described in Sec. 3.1, parameter and algorithm dependence of walltime (a), and comparison of a case with no load
balancing, with static load balancing, and with dynamic load balancing (b).

need to be tuned by the application user,1 while the latter two
approaches are free of user-facing hyperparameters for costs.

As discussed in Sec. 3.2, the three schemes give similar spatial dis-
tributions of computational cost (and as a result, similar measured
load balance efficiencies), yet the performance comparison here
shows that with the overhead of CUPTI cost collection, the simula-
tion runs about 2× slower than with either heuristic or GPU clock
cost collection. This discrepancy is partly explained by an over-
head associated with CUPTI instrumentation; we find that simply
enabling collection of CUPTI activity records and registering a call-
back function to handle the request and delivery of buffers in which
to store activity records (see Sec. 2.2) increases this simulation’s
walltime by 30%; the residual 70% increase in walltime (relative to
the heuristic or GPU clock cases) is accounted for mostly by latency
in our implementation’s data movement of costs to global mem-
ory. Since the CUPTI instrumentation introduces a non-negligible,
unmeasured overhead, it is possible that load balancing without
knowledge of these unmeasured costs decreases the actualized (as
opposed to measured) load balance efficiency.

The second group of bars (orange) in Fig. 6 (panel (a)) shows
a comparison between the knapsack and SFC policies (described
in Sec. 2.2; see also panels (a) and (b), respectively, of Fig. 5 for
visualizations of sample distribution mappings that result from
either policy). Both the knapsack and SFC simulations presented
here employ heuristic cost assignment, but we have tuned the
particle and cell weights (see Sec. 2.2) to give the most favorable
comparison with knapsack;2 at best, we find that the walltime
with SFC is about comparable to that obtained with the knapsack
algorithm. The lesser walltime obtained with knapsack, relative to
that obtainedwith SFC, is perhaps counterintuitive; by construction,
the SFC algorithm increases the correlation length with respect to
GPU ownership of boxes over the simulation domain (as in panel
(b) of Fig. 5, note the relatively large unicolored patches), and thus

1On the OLCF Summit system using finite-difference time-domain field solve and third-
order particle shapes, we measured in WarpX particle and cell weights of 0.75 and 0.25,
which (unless otherwise stated) we used in the tests presented here. These weights were
calibrated based on benchmark tests, one with a relatively large number of particles
per cell (27 particles per cell) distributed uniformly over the simulation domain, and
another with no particles (only cells); together, these tests yielded estimates of the
walltime corresponding to a single particle and cell, and in turn relative weightings
for a particle and cell.
2By inspection, we determined (for heuristic cost assignment) that particle and cell
weights of 0.02 and 0.98, respectively, yield roughly optimal performance with the
SFC algorithm; we note that the AMReX implementation of the knapsack algorithm
includes the option to limit the maximum number of boxes per GPU (our default is 1.5
times the average number of boxes per GPU), but this option is not implemented for
SFC. The relatively large cell weight and small particle weight that we find are optimal
with SFC emulates the constraint on the maximum number of boxes per GPU.

reduces overall costs associated with communications; while the
geometric constraint of the SFC algorithm may result in lower
load balance efficiency relative to knapsack, the effect of improved
communications with SFC may outweigh the incurred penalty to
load balance efficiency, leading to a net reduction in simulation
walltime. This scenario requires that communications account for
a significant fraction of the simulation’s walltime, which is indeed
true in our case: as discussed in Sec. 3.1, compute-intensive kernels
account for 50% of the measured walltime, and the remainder is
predominantly accounted for by communication routines. Still,
relative to knapsack, we see no speedup with SFC.

To partially account for this, we note that in AMReX’s communi-
cation routines, a patch of boxes posts non-blocking MPI send oper-
ations to move data that must be communicated to a different GPU,
then performs local work (such as local copy operations required
by interior boxes), and lastly blocks until all MPI requests have
completed. Although SFC has the potential to improve intra-GPU
communication, the overall time is still bound by the inter-GPU
data transfer required by boxes at patch edges. This may partially
account for the comparable performance of knapsack and SFC.

The third group of bars (green) in Fig. 6 (panel (a)) shows the
effect of varying the average number of boxes per GPU3 (for a
fixed domain size, this is equivalent to varying box size), which we
vary over 150, 38, 9, and 2 (these correspond, respectively to box
sizes𝑀𝑥 = 16, 32, 64, or 128 cells). Increasing the average number
of boxes per GPU (decreasing the box size) produces a trade-off
between the overhead associated with managing more boxes (for
example, decreasing the box size on a fixed domain increases the to-
tal number of guard cells and communication becomes more costly),
and the improved load balancing that is possible with a smaller
box size (note that smaller boxes enable more fine-grained pixeliza-
tion of the spatial profile of cost, and thus greater load balance
efficiency relative to larger boxes); the improved load balancing
can be inferred from the shrinking error bars with decreasing box
size (equivalently, increasing average number of boxes per GPU).
Even though the load balance efficiency is greater with an aver-
age of, e.g., 150 boxes (of size𝑀𝑥 = 16) than with 2 boxes (of size
𝑀𝑥 = 128 cells) per GPU, the walltime is greater (896 s with 150
boxes per GPU as opposed to 1040 s with 2 boxes per GPU). This is
because the overhead associated with a greater number of boxes (of
smaller size) outweighs the performance benefit of improved load
balance efficiency. We find that an average of 9 boxes per GPU (box

3Note that the number of boxes per GPU, as opposed to the average number of boxes
per GPU, is not fixed; this can of course vary as GPU ownership of boxes is shuffled
due to load balancing.
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size𝑀𝑥 = 64 cells) produces a close to optimal trade-off between
overhead and improved load balancing capability.

The fourth group of bars (red) in panel (a) of Fig. 6 shows the
performance dependence on load balance interval, which we vary
over 1, 3, 10, 30, 100, and 300 steps (load balance interval of 10, for
example, means the load balancing routine is called once every 10
steps). As discussed in Sec. 3.2, there is little penalty to walltime
when calling the load balancing routine frequently because the
costly operation of communicating and updating the distribution
mapping on all ranks is done only when doing so would improve
the load balance efficiency more than a minimal threshold.

This improvement threshold is shown in the last group of bars
(purple) in panel (a) of Fig. 6, which we vary over 5%, 10%, and
15%. If the improvement threshold is too low, communications
become more costly as the distribution mapping is updated more
frequently; on the other hand, if the improvement threshold is too
high, the distribution mapping is not updated frequently enough
to reap the performance benefit of load balancing. We find that an
improvement threshold of 10% offers an optimal trade-off between
these competing effects.

For the simulations we present here, the time required to gather
costs from all ranks (which is needed to determine whether to
update the distribution mapping) is, at most, no greater than 2.3%
of the total walltime (which is achieved with a load balance interval
of 1). Since this is a relatively small fraction of the total walltime, the
load balancing routine may be called frequently to ensure that load
balance is maintained, without incurring a significant penalty to
walltime. Empirically, we find little difference in walltime for load
balance intervals in the range 1–30 steps, with an increasing trend
for load balance intervals ≳ 30 steps (this is due to the lower load
balance efficiency on average over the duration of the simulation).

To summarize, we achieve best performance with the following
selection of parameters and algorithms: GPU clock cost assignment,
knapsack policy for computing the distribution mapping, an av-
erage of 9 boxes per GPU (equivalently, a box size𝑀𝑥 = 64 cells),
and calling the load balancing routine once every 10 steps (similar
performance is achieved with heuristic in place of GPU clock cost
measurement, however this requires the user to tune particle and
cell weights, which can vary depending on hardware an algorith-
mic choices). With these selections, load balancing accounts for (at
most, across all ranks) 4–6% of the walltime in our test problem.

In panel (b) of Fig. 6, we compare the walltimes of a baseline case
without load balancing, a case with static load balancing (i.e., the
load is balanced once toward the beginning of the simulation), and
a case with dynamic load balancing where the parameters and algo-
rithms are tuned for roughly optimal performance (as determined
from the tests shown in panel (a); the static load balancing case
has the same parameter and algorithm selections as the dynamic
load balancing case, apart from the load balance interval). The rela-
tively large error bars for the baseline case without load balancing
indicate a severe load imbalance. Static load balancing results in a
2.9× speedup relative to the baseline case without load balancing;
dynamic load balancing yields even greater performance improve-
ment, with a 3.8× speedup relative to the baseline case without load
balancing (1.2× speedup compared to static load balancing). This
shows that the spatial profile of costs varies substantially with time,

and that dynamic, as opposed to static, load balancing is essential
to improved performance.

4 PERFORMANCE ASSESSMENT AND
SCALING OF LOAD BALANCING

In this section, we present a performance model, calibrated with
strong scaling measurements of our code, and use it to assess the
performance of our improvements to WarpX’s load balancing in
the laser-ion acceleration problem described in Sec. 3.1. We present
the weak scaling of our load balancing routine from 1 up to 1024
nodes (6 – 6144 GPUs). As in Sec. 3, these simulations were run on
the OLCF Summit system (IBM AC922 server nodes; 2 IBM Power9
CPUs and 6 NVIDIA V100 GPUs per node).

For a given code, how much of a performance improvement
may be anticipated with load balancing? To answer this question,
we consider the load balancing operation in the context of strong
scaling, i.e. increasing compute resources for a problem of fixed size.
With measurements of strong scaling for a given code, one may
model the performance response as a function of available compute
resources; ideally, performance improves linearly with increasing
compute resources, and with a constant of proportionality equal to
unity. However, in realistic codes, factors such as communications
and overhead may modify the relationship and lead to less than
ideal scaling. A strong scaling model can capture these nonideal
effects and be used to predict the performance improvement that
would result from a given increase in compute resources.

To apply strong scaling in understanding the performance im-
provement that is possible through load balancing, we consider a
simulation with a computational load that is initially imbalanced
(i.e., there is at least one compute element assigned a greater compu-
tational load than another); we call this initial maximum compute
work (over all compute elements) 𝑐max0. The performance (e.g., wall-
time) of this hypothetical simulation is limited by the initial load
imbalance 𝑐max0, and may be improved by distributing compute
work evenly over available resources. After perfect load balanc-
ing, the compute work is equally distributed over all 𝑁 compute
elements, 𝑐0 = 𝑐1 = · · · = 𝑐𝑁 = 𝑐avg0, which becomes the new
performance limiter (we define 𝑐avg0 as the average at initialization
of 𝑐0, 𝑐1, · · · , 𝑐𝑁 ). Load balancing is similar to strong scaling: more
compute resources are assigned to the work 𝑐max0, and the work-
load of the compute element initially assigned that work decreases
from 𝑐max0 to 𝑐avg0; with strong scaling, increasing the compute
resources while holding the problem size fixed effectively decreases
the compute work assigned to each compute element.

The ratio 𝑐max0/𝑐avg0 can therefore be calibrated (weighted)
against a code’s characteristic strong-scaling efficiency, which we
fit to an exponential model for walltime: 𝑡wall ≈ 𝑛−𝑥nodes. The param-
eter 𝑥 is a value between 1 (ideal) and 0. The maximum speedup, 𝑆 ,
from perfect load balancing can then be expressed as:

𝑆 =

(
𝑐max0
𝑐avg0

)𝑥
=

(
1
𝐸0

)𝑥
, (2)

where 𝐸0 is the initial load balance efficiency of the simulation (see
Eq. (1)). For example, for 16 nodes, we measure load a imbalance ra-
tio to average cost of 𝑐max0/𝑐avg0 = 6.2. Perfectly load-balanced on
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Figure 7: Strong scaling for a WarpX baseline problem (domain filled uni-
formly with plasma). Circles show measurements and the solid curve shows
ideal scaling of walltime with number of compute nodes. The dashed curve
shows a fit to the measured walltimes, which we use, along with the level
of initial load imbalance, to predict the maximum possible speedup possible
with perfect load balancing.

the same amount of compute resources, this is the factor the slow-
est compute element is strong-scaled. Calibrated against WarpX
characteristic strong scaling, in 2D3V 𝑥 = 0.91 and 3D3V 𝑥 = 0.88,
the best speedup a load balance algorithm can achieve with this
starting condition and assuming a dynamically sustained imbal-
ance is 5×. In practice, realization of this maximum speedup may
be limited by further factors, such as the cost of performing a load
balance operation and more complex communication patterns.4

In Fig. 7, we show strong scaling measurements (red circles) for
WarpX, i.e., walltime as a function of compute nodes; the problem
setup is a domain of size (𝑁𝑧 , 𝑁𝑥 ) = (3072, 3072) cells, filled uni-
formly with 550 particles per cell. In the tests, we vary the number
of nodes over 6, 10, 18, 31, and 72 (36, 60, 108, 186, and 432 GPUs,
respectively). The dashed line shows a log-log fit to our measure-
ments, yielding a performance model for walltime, 𝑡wall ∝ 𝑛−0.91nodes
(for comparison with the ideal strong scaling, we show also the
curve 𝑡wall ∝ 𝑛−1nodes as a solid line).

To assess the performance of WarpX’s updated load balancing,
we performed a weak scaling test (from 1 up to 1024 nodes, i.e., 6
up to 6144 GPUs) of the laser-ion acceleration problem with and
without load balancing (described in Sec. 3.1), and compared the
measured speedup (i.e., the ratio of walltime with load balancing
to walltime without load balancing; blue points in Fig. 8) to the
ideal limit computed from strong scaling and the initial load im-
balance (dashed line in Fig. 8). For 64, 256, and 1024 nodes, our
simulations without load balancing exceeded a GPU’s memory (16
GB on the NVIDIA V100 GPUs we use) before reaching the pre-
scribed final timestep, leading to extremely degraded performance
(this is indicated by the circled points in Fig. 8);

for these cases the speedup is computed only with walltimes (of
the load balanced and load imbalanced cases) up to the timestep that

4In our case, decreasing the box size𝑀𝑥 , as discussed in Sec. 3.3, leads to an overall
performance penalty, in spite of the improved load balancing with smaller box size
(see the third group of bars (green) in panel (a) of Fig. 6).
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Figure 8: For the laser-ion acceleration test problemdescribed in Sec. 3.1, weak
scaling (from 1 up to 1024 nodes, i.e., 6 up to 6144 GPUs) of speedup factor,
relative to baseline case without load balancing. The dashed line shows max-
imum possible speedup, as predicted from strong scaling and the initial level
of load imbalance. Circled points indicate cases in which the no-load balanc-
ing baseline exceeded GPU memory prior to completion of the simulation
(43%, 9%, and 8% completion for 64, 256, and 1024 nodes, respectively); for these
cases, the simulations with dynamic load balancing ran to completion with-
out exceeding GPU memory capacity.

the load imbalanced case exceeds a GPU’s memory.5 For 64, 256, and
1024 nodes, the simulations without load balancing reached 43%, 9%,
and 8% completion, respectively, before exceeding a GPU’s memory;
this demonstrates that, especially when a code uses memory-limited
GPUs, load balancing is not just crucial to performance: it enables
simulations that are not possible otherwise for a given amount
of compute resources! With static load balancing, we tested the
cases with 64 and 256 nodes and they ran to completion without
exceeding GPU memory capacity, but for problems which develop
severe load imbalance as the simulation progresses, dynamic load
balancing may be necessary to prevent the performance-breaking
effect of exceeding GPU memory capacity.

For number of nodes in the range 4–1024, we see, relative to the
baseline case without load balancing, a 3–4× speedup with dynamic
load balancing (which is likely an underestimate for the crashing
runs with 64, 256, and 1024 nodes); compared to the ideal maximum
speedup computed from strong scaling, these measurements attain
from 62% to 74% of the predicted limit (when running on 6 GPUs, we
observe a 2× speedup, which corresponds to 88% of the predicted
maximum speedup).

This study has demonstrated that adaptive, run time based GPU
timers yield a substantial performance gain for WarpX PIC simu-
lations with temporally variable particle distributions. GPU-based
simulations of next generation particle accelerators and astrophys-
ical plasmas can now readily take advantage of these features to
ensure an efficient and performant transition to anticipated exascale
supercomputers.

5We also ran the 64 and 256 node cases (both with and without load balancing) with
fewer particles per cell, such that the cases without load balance ran to completion
without exceeding GPU memory; the measured speedup factors are similar to those
shown by the circled points in Fig. 8, which indicates that those measurements, though
limited to the period before exceeding GPU memory, are representative of the speedup
possible over the full prescribed time range.
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5 RELATEDWORK
State-of-the-art particle-in-cell codes [4, 5, 7, 9, 13, 17] typically
support either static load balancing or dynamic load balancing
targeting CPUs. To the knowledge of the authors, those particle-
mesh codes that do support dynamic load balancing on GPUs rely
on cost functions based on node-local application data as a surrogate
for computing run time [10, 19]. The heuristic approach, however,
is not necessarily an accurate reflection of true computing run
time [22]. To gain the full performance benefit of dynamic load
balancing, without excessive tuning of hyperparameters by the
user, computational costs can be measured accurately at runtime.
An adoption of dynamic load balancing strategies for accelerator
hardware in exascale-workflows is therefore needed, including
a reduction of user-facing hyperparameters, which are hard and
expensive to tune in realistic scenarios.

Dietrich et al. [8] demonstrated instrumentation of CUDA ker-
nels as a way to measure kernel run times for post-run analysis. One
of the herein presented implementations for cost assessment which
is free of user-facing hyperparameters, GPU clock, employs a similar
approach, yet provides measurement of costs in-situ as the applica-
tion is running, thus enabling on-the-fly load balancing based on
measured computational costs (see Sec. 2.2). Furthermore, the run-
time overhead introduced with this technique is small enough that
it does not negate the performance benefit of automatic runtime
load balancing [20]. The GPU clock strategy for cost measurement
is potentially portable, given the accelerator framework supports a
clock method (or similar) to assess kernel run times.

6 SUMMARY AND DISCUSSION
In this work, we present enhancements to dynamic load balancing
for particle and mesh-based simulations targeting GPU architec-
tures. As a component of these improvements, we introduce several
GPU-applicable strategies for measuring the relative computational
costs of sub-domains of compute work. While as application de-
velopers we can find optimal hyperparameters for a specific setup
for heuristic cost-functions, we demonstrate that a measurement
of the actual kernel run time can be established. Especially, we
implemented a potentially vendor-neutral, in-situ, in-kernel mea-
surement of run time based on a GPU clock that shows negligible
load-balancing overhead in practice. Contrarily, a measurement ap-
proach based on Nvidia CUPTI added significant run time overhead
and is not vendor-neutral.

We demonstrate our methods in the fully kinetic particle-in-cell
code WarpX and explore its performance. For the scientifically rele-
vant test case of laser-ion acceleration, we explore the performance
dependence of load balancing on several numerical parameters
and algorithm choices that enter into our routine, including cost
assignment strategy (heuristic cost assessment based on a weighted
linear sum of the number of particles and cells, GPU clock timing
to assess summed thread execution time, and CUPTI-based timing
to assess kernel execution time using NVIDIA’s CUPTI API), load
balance strategy (knapsack or SFC), the number of boxes per GPU
(equivalently, on a fixed domain, the box size in cells), the frequency
with which we call the load balancing routine, and the load balance
efficiency improvement required to communicate and update a pro-
posed distribution mapping. For the laser-ion acceleration that is

the focus of the present work, we measure a 3.8× speedup relative
to the baseline without dynamic load balancing and a 1.2× speedup
compared to the static load balancing baseline.

To assess the performance of WarpX’s updated dynamic load
balancing, we introduce a performance model based on strong scal-
ing measurements of WarpX and link performance improvement
through strong scaling to the initial level of load imbalance in our
simulations, thereby predicting a theoretical maximum speedup
factor that is achievable through load balancing. We present the
weak scaling (from 24 up to 6144 GPUs on Summit) of our dynamic
load balancing performance relative to the baseline case without
load balancing, and find that dynamic load balancing improves per-
formance, with achieved improvement typically 62% to 74% of the
predicted maximum (88% when running on 6 GPUs); in particular,
several of our simulations demonstrate that dynamic load balancing
is de-facto a prerequisite for productive usage of distributed, locally
limited GPU memory at scale.

In the present work, we focused on load balancing according
to the cost of GPU compute. Incorporating communication costs
into our load balancing routine will be a topic of future investiga-
tion, and may bring the performance of WarpX’s load balancing
closer to the theoretical limit of our presented performance model.
Further exploration of communication costs may also help to de-
mystify the relative performance of knapsack and SFC update for
the distribution mapping, which remains an open question.

ACKNOWLEDGMENTS
The authors thank the WarpX and AMReX development teams for
invaluable contributions. We thank Andrew T. Myers and Weiqun
Zhang for valuable discussions. An award of computer time was
provided by the ASCR Leadership Computing Challenge (ALCC)
program. This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC05-00OR22725. This research also
used resources of the National Energy Research Scientific Comput-
ing Center (NERSC), which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. This research was supported by the Exascale Comput-
ing Project (17-SC-20-SC), a joint project of the U.S. Department of
Energy’s Office of Science and National Nuclear Security Admin-
istration, responsible for delivering a capable exascale ecosystem,
including software, applications, and hardware technology, to sup-
port the nation’s exascale computing imperative. This work was
performed in part under the auspices of the U.S. Department of
Energy by Lawrence Berkeley National Laboratory under Contract
DE-AC02-05CH11231.

REFERENCES
[1] 1993. Document for a standard message-passing interface. Technical Report

CS-93-214. Message Passing Interface Forum.
[2] Michael Bader. 2012. Space-Filling Curves: An Introduction with Applications in

Scientific Computing. Springer Publishing Company, Incorporated.
[3] C K Birdsall and A B Langdon. 1991. Plasma Physics via Computer Simulation.

IOP Publishing. https://doi.org/10.1201/9781315275048
[4] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T. J. T. Kwan. 2008. Ultrahigh

performance three-dimensional electromagnetic relativistic kinetic plasma simu-
lation. Physics of Plasmas 15, 5 (2008), 055703. https://doi.org/10.1063/1.2840133
arXiv:https://doi.org/10.1063/1.2840133

10

https://doi.org/10.1201/9781315275048
https://doi.org/10.1063/1.2840133
https://arxiv.org/abs/https://doi.org/10.1063/1.2840133


In-Situ Assessment of Device-Side Compute Work for Dynamic Load Balancing in a GPU-Accelerated PIC Code
TBD, TBD,

[5] M. Bussmann, H. Burau, T. E. Cowan, A. Debus, A. Huebl, G. Juckeland, T. Kluge,
W. E. Nagel, R. Pausch, F. Schmitt, U. Schramm, J. Schuchart, and R. Widera.
2013. Radiative signature of the relativistic Kelvin-Helmholtz Instability. In SC
’13: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. 1–12. https://doi.org/10.1145/2503210.2504564

[6] NVIDIA Corporation. [n.d.]. API Reference Guide for CUPTI.
https://docs.nvidia.com/cuda/cupti/index.html.

[7] J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello, A. Grassi, M. Flé, G.
Bouchard, I. Plotnikov, N. Aunai, J. Dargent, C. Riconda, and M. Grech. 2018.
Smilei : A collaborative, open-source, multi-purpose particle-in-cell code for
plasma simulation. Computer Physics Communications 222 (2018), 351 – 373.
https://doi.org/10.1016/j.cpc.2017.09.024

[8] R. Dietrich, F. Schmitt, R. Widera, and M. Bussmann. 2012. Phase-Based Profiling
in GPGPU Kernels. In 2012 41st International Conference on Parallel Processing
Workshops. 414–423. https://doi.org/10.1109/ICPPW.2012.59

[9] R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S.
Deng, S. Lee, T. Katsouleas, and J. C. Adam. 2002. OSIRIS: A Three-Dimensional,
Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators.
In Computational Science — ICCS 2002, Peter M. A. Sloot, Alfons G. Hoekstra,
C. J. Kenneth Tan, and Jack J. Dongarra (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 342–351.

[10] K. Germaschewski, W. Fox, S. Abbott, N. Ahmadi, K. Maynard, L. Wang, H. Ruhl,
and A. Bhattacharjee. 2016. The Plasma Simulation Code: A modern particle-in-
cell code with patch-based load-balancing. J. Comput. Phys. 318 (2016). Issue 305.
https://doi.org/10.1016/j.jcp.2016.05.013

[11] Axel Huebl, Martin Rehwald, Lieselotte Obst-Huebl, Tim Ziegler, Marco Garten,
René Widera, Karl Zeil, Thomas E. Cowan, Michael Bussmann, Ulrich Schramm,
and Thomas Kluge. 2020. Spectral control via multi-species effects in PW-class
laser-ion acceleration. Plasma Physics and Controlled Fusion 62, 12, Article
124003 (Dec. 2020), 124003 pages. https://doi.org/10.1088/1361-6587/abbe33
arXiv:1903.06428 [physics.plasm-ph]

[12] A. D. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juckeland, R.
Dietrich, D. Poole, and C. Lamb. 2011. Parallel Performance Measurement of
Heterogeneous Parallel Systems with GPUs. In 2011 International Conference on
Parallel Processing. 176–185. https://doi.org/10.1109/ICPP.2011.71

[13] Kyle G. Miller, Roman P. Lee, Adam Tableman, Anton Helm, Ricardo A. Fonseca,
Viktor K. Decyk, and Warren B. Mori. 2021. Dynamic load balancing with
enhanced shared-memory parallelism for particle-in-cell codes. Computer Physics
Communications 259 (2021), 107633. https://doi.org/10.1016/j.cpc.2020.107633

[14] Lieselotte Obst, Sebastian Göde, Martin Rehwald, Florian-Emanuel Brack, João
Branco, Stefan Bock, Michael Bussmann, Thomas E. Cowan, Chandra B. Curry,
Frederico Fiuza, Maxence Gauthier, René Gebhardt, Uwe Helbig, Axel Huebl, Uwe
Hübner, Arie Irman, Lev Kazak, Jongjin B. Kim, Thomas Kluge, Stephan Kraft,
Markus Loeser, Josefine Metzkes, Rohini Mishra, Christian Rödel, Hans-Peter
Schlenvoigt, Mathias Siebold, Josef Tiggesbäumker, Steffen Wolter, Tim Ziegler,
Ulrich Schramm, Siegfried H. Glenzer, and Karl Zeil. 2017. Efficient laser-driven
proton acceleration from cylindrical and planar cryogenic hydrogen jets. Scientific
Reports 7, Article 10248 (Aug. 2017), 10248 pages. https://doi.org/10.1038/s41598-
017-10589-3

[15] Olga Pearce, Todd Gamblin, Bronis R. de Supinski, Tom Arsenlis, and Nancy M.
Amato. 2014. Load Balancing N-Body Simulations with Highly Non-Uniform
Density. In Proceedings of the 28th ACM International Conference on Supercomput-
ing (Munich, Germany) (ICS ’14). Association for Computing Machinery, New
York, NY, USA, 113–122. https://doi.org/10.1145/2597652.2597659

[16] M. Rowan, A. Huebl, K. Gott, J. Deslippe, M. Thévenet, R. Lehe, and J.-L. Vay.
2021. Supplementary material for “In-Situ Assessment of Device-Side Compute
Work for Dynamic Load Balancing in a GPU-Accelerated PIC Code”. https://doi.
org/10.5281/zenodo.4708449

[17] A. Spitkovsky. 2005. AIP Conference Proceedings 801 (2005), 345.
[18] TOP500. 2020. November 2020 | TOP500 Supercomputer Sites. Retrieved December

9, 2020 from www.top500.org
[19] S. Tsuzuki and T. Aoki. 2016. Effective Dynamic Load Balance using Space-Filling

Curves for Large-Scale SPH Simulations on GPU-rich Supercomputers. In 2016
7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems
(ScalA). 1–8. https://doi.org/10.1109/ScalA.2016.005

[20] Rob F. Van der Wijngaart, Evangelos Georganas, Timothy G. Mattson, and An-
drew Wissink. 2017. A New Parallel Research Kernel to Expand Research on
Dynamic Load-Balancing Capabilities. In High Performance Computing, Julian M.
Kunkel, Rio Yokota, Pavan Balaji, and David Keyes (Eds.). Springer International
Publishing, Cham, 256–274.

[21] J.-L. Vay, A. Almgren, J. Bell, L. Ge, D.P. Grote, M. Hogan, O. Kononenko, R.
Lehe, A. Myers, C. Ng, J. Park, R. Ryne, O. Shapoval, M. Thévenet, and W. Zhang.
2018. Warp-X: A new exascale computing platform for beam–plasma simulations.
Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 909 (2018), 476 – 479. https://
doi.org/10.1016/j.nima.2018.01.035 3rd European Advanced Accelerator Concepts
workshop (EAAC2017).

[22] AndrewM.Wissink, Richard D. Hornung, Scott R. Kohn, Steve S. Smith, and Noah
Elliott. 2001. Large Scale Parallel Structured AMRCalculations Using the SAMRAI
Framework. In Proceedings of the 2001 ACM/IEEE Conference on Supercomputing
(Denver, Colorado) (SC ’01). Association for Computing Machinery, New York,
NY, USA, 6. https://doi.org/10.1145/582034.582040

[23] Mo Zeyao and Zhang Baolin. 2001. Multilevel averaging weight method for
dynamic load imbalance problems. International Journal of Computer Math-
ematics 76, 4 (2001), 463–477. https://doi.org/10.1080/00207160108805040
arXiv:https://doi.org/10.1080/00207160108805040

[24] Weiqun Zhang, Andrew Myers, Kevin Gott, Ann Almgren, and John Bell. 2020.
AMReX: Block-Structured Adaptive Mesh Refinement for Multiphysics Applica-
tions. arXiv e-prints, Article arXiv:2009.12009 (Sept. 2020), arXiv:2009.12009 pages.
arXiv:2009.12009 [cs.MS]

11

https://doi.org/10.1145/2503210.2504564
https://doi.org/10.1016/j.cpc.2017.09.024
https://doi.org/10.1109/ICPPW.2012.59
https://doi.org/10.1016/j.jcp.2016.05.013
https://doi.org/10.1088/1361-6587/abbe33
https://arxiv.org/abs/1903.06428
https://doi.org/10.1109/ICPP.2011.71
https://doi.org/10.1016/j.cpc.2020.107633
https://doi.org/10.1038/s41598-017-10589-3
https://doi.org/10.1038/s41598-017-10589-3
https://doi.org/10.1145/2597652.2597659
https://doi.org/10.5281/zenodo.4708449
https://doi.org/10.5281/zenodo.4708449
www.top500.org
https://doi.org/10.1109/ScalA.2016.005
https://doi.org/10.1016/j.nima.2018.01.035
https://doi.org/10.1016/j.nima.2018.01.035
https://doi.org/10.1145/582034.582040
https://doi.org/10.1080/00207160108805040
https://arxiv.org/abs/https://doi.org/10.1080/00207160108805040
https://arxiv.org/abs/2009.12009

	Abstract
	1 Introduction
	2 In-Situ Device-Side Dynamic Load Balancing
	2.1 Overview of the Domain Decomposition in Particle-Mesh Codes
	2.2 Load Balancing Strategy

	3 Dynamic Load Balancing Test Problem: 2D Laser-Ion Acceleration
	3.1 Laser-Ion Acceleration: Problem Setup
	3.2 Load Balance: Time Evolution
	3.3 Parameter Dependence of Dynamic Load Balancing Performance

	4 Performance Assessment and Scaling of Load Balancing
	5 Related Work
	6 Summary and Discussion
	Acknowledgments
	References

