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ABSTRACT

Hot collisionless accretion flows, such as the one in Sgr A∗ at our Galactic center, provide a unique
setting for the investigation of magnetic reconnection. Here, protons are non-relativistic while electrons
can be ultra-relativistic. By means of two-dimensional particle-in-cell simulations, we investigate
electron and proton heating in the outflows of trans-relativistic reconnection (i.e., σw ∼ 0.1−1, where
the magnetization σw is the ratio of magnetic energy density to enthalpy density). For both electrons
and protons, we find that heating at high βi (here, βi is the ratio of proton thermal pressure to
magnetic pressure) is dominated by adiabatic compression (“adiabatic heating”), while at low βi it is
accompanied by a genuine increase in entropy (“irreversible heating”). For our fiducial σw = 0.1, the
irreversible heating efficiency at βi . 1 is nearly independent of the electron-to-proton temperature
ratio Te/Ti (which we vary from 0.1 up to 1), and it asymptotes to ∼ 2% of the inflowing magnetic
energy in the low-βi limit. Protons are heated more efficiently than electrons at low and moderate
βi (by a factor of ∼ 7), whereas the electron and proton heating efficiencies become comparable at
βi ∼ 2 if Te/Ti = 1, when both species start already relativistically hot. We find comparable heating
efficiencies between the two species also in the limit of relativistic reconnection (σw & 1). Our results
have important implications for the two-temperature nature of collisionless accretion flows, and may
provide the sub-grid physics needed in general relativistic MHD simulations.
Keywords: magnetic reconnection – accretion, accretion disks – galaxies: jets – X-rays: binaries –

radiation mechanisms: non-thermal – acceleration of particles

1. INTRODUCTION

The ultra-low-luminosity source at the center of the
Milky Way, Sagittarius A∗ (Sgr A∗), is thought to be
powered by accretion onto a supermassive black hole. Sgr
A∗ radiates well below the Eddington limit and there is
strong evidence that the accreting gas can be described as
an advection-dominated accretion flow (ADAF, also re-
ferred to as a radiatively inefficient accretion flow, RIAF)
(Narayan & Yi 1994, 1995b,a; Abramowicz et al. 1995;
Narayan & McClintock 2008; Yuan & Narayan 2014).
In ADAFs, the disk is geometrically thick and optically
thin. Additionally, the plasma is predicted to be two-
temperature for several reasons: first, in the ADAF con-
figuration, the density of accreting gas is low enough
that Coulomb collisions between electrons and protons
are extremely rare on accretion timescales, so that the
species become thermally decoupled. Second, electrons
radiate more efficiently than protons. Lastly, relativis-
tic electrons are heated less than non-relativistic pro-
tons when subjected to the same adiabatic compression.
For all these reasons, the plasma is expected to be two-
temperature, with protons significantly hotter than elec-
trons (Narayan & Yi 1995b; Yuan et al. 2003).

Despite the above arguments, the two-temperature
gas may be driven to a single-temperature state by ki-
netic processes, such as reconnection and instabilities
(Quataert et al. 2002; Riquelme et al. 2012, 2015; Sironi
& Narayan 2015; Sironi 2015; Werner et al. 2016). To
capture the effects of these plasma processes, one re-
quires a fully-kinetic description, which can be achieved
via numerical techniques such as particle-in-cell (PIC)
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simulations. In principle, such ab initio simulations can
be used to provide the necessary sub-grid physics that,
to date, cannot be captured in magnetohydrodynamic
(MHD) simulations (e.g., Ressler et al. 2015, 2017; Ball
et al. 2016, 2017; Chael et al. 2017; Sädowski et al. 2017).

In supermassive black hole accretion flows, the ratio of
ion thermal pressure to magnetic pressure,

βi =
8πn0kBTi

B2
0

, (1)

(where n0 is the ion number density, kB is Boltzmann’s
constant, Ti is the ion temperature, and B0 is the mag-
nitude of the magnetic field) is expected to vary in the
disk midplane in the range βi ∼ 10 – 30 (See Fig. 1 of
Sädowski et al. 2013). However, in plasma far above and
below the midplane, the “corona,” the system is expected
to be magnetically dominated, such that βi . 1. Here,
the dissipation of magnetic energy via reconnection can
result in particle heating, acceleration, and bulk motion.

Even in the magnetized corona, the magnetization,

σi =
B2

0

4πn0mic2
, (2)

is generally small, i.e., σi . 1. Electron heating by re-
connection in the non-relativistic limit (σi � 1) has been
studied extensively, both theoretically and by means
of PIC simulations, in the context of the solar wind,
Earth’s magnetotail, and laboratory plasmas (Hoshino
et al. 2001; Jaroschek et al. 2004; Loureiro et al. 2013;
Schoeffler et al. 2011, 2013; Shay et al. 2014; Dahlin
et al. 2014; Daughton et al. 2014; Li et al. 2015; Haggerty
et al. 2015; Numata & Loureiro 2015; Le et al. 2016; Li
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et al. 2017). Though less commonly studied, relativistic
reconnection (i.e., σi � 1) in electron-proton plasmas
has also received some attention in recent years (Sironi
et al. 2015; Guo et al. 2016).

The collisionless plasma in hot accretion flows around
black holes provides a peculiar environment for reconnec-
tion, since σi . 1, a regime that falls between the well-
studied non-relativistic and ultra-relativistic regimes.
For βi ∼ 1 and σi . 1, protons are generally non-
relativistic, yet electrons can be ultra-relativistic. This
territory remains largely unexplored, in terms of both
simulation and theory, and studies have only recently
begun to probe reconnection in this parameter regime
(Melzani et al. 2014; Werner et al. 2016).

The aim of this work is to explore particle heating
via magnetic reconnection in the trans-relativistic regime
σi . 1. We study heating in the outflows of anti-parallel
reconnection (i.e., in the absence of a guide field perpen-
dicular to the alternating fields) by means of fully-kinetic
PIC simulations, choosing inflow parameters appropri-
ate for the coronae of collisionless accretion flows. We
present the electron and proton heating as a function of
mass ratio (up to the physical value), inflow magnetiza-
tion, ion plasma βi and temperature ratio Te/Ti.

We show that heating in the high-βi regime is primar-
ily dominated by adiabatic compression (we shall call
this contribution “adiabatic heating”), while for low βi

the heating is genuine, in the sense that it is associated
with an increase in entropy (“irreversible heating”). At
our fiducial σi ∼ 0.1, we find that for βi . 1 the irre-
versible heating efficiency is independent of Te/Ti (which
we vary from 0.1 up to 1). For equal electron and pro-
ton temperatures, the fraction of inflowing magnetic en-
ergy converted to electron irreversible heating at realistic
mass ratios decreases from ∼ 1.6% down to ∼ 0.2% as
βi ranges from βi ∼ 10−2 up to βi ∼ 0.5, but then it
increases up to ∼ 3% as βi approaches ∼ 2. Protons
are heated much more efficiently than electrons at low
and moderate βi (by a factor of ∼ 7), whereas the elec-
tron and proton heating efficiencies become comparable
at βi ∼ 2 if Te/Ti = 1, when both species start already
relativistically hot. We find comparable heating efficien-
cies between the two species also in the limit of relativis-
tic reconnection, when the magnetization exceeds unity.
The unifying feature of these two cases (i.e., high mag-
netization, and high βi at low magnetization) is that the
scale separation between electrons and protons in the re-
connection outflows approaches unity, so the two species
behave nearly the same. Motivated by our findings, we
propose an empirical formula (Eq. 34) that captures the
magnetization and plasma-βi dependence of the electron
heating efficiency (normalized to the overall electron +
proton heating efficiency) over the whole range of mag-
netization and βi that we explore.

We also measure the inflow speed (i.e., the reconnec-
tion rate) as a function of the flow conditions, finding
that for our fiducial magnetization σw = 0.1 it decreases
from vin/vA ≈ 0.08 down to 0.04 as βi ranges from
βi ∼ 10−2 up to βi ∼ 2 (here, vA is the Alfvén speed).
Similarly, the outflow speed saturates at the Alfvén ve-
locity for low βi, but it decreases with increasing βi down
to vout/vA ≈ 0.7 at βi ∼ 2. The inflow (outflow, respec-
tively) speed is independent of Te/Ti at low βi, with only

x̂ẑ

ŷ Current sheet

Bx at initialization

Figure 1. Schematic depiction of the reconnection layer initial
configuration. Red and blue regions show magnetic field lines of
opposite polarity. A hot, over-dense component of plasma (green
region) balances the magnetic pressure outside the current sheet.

a minor tendency for lower (higher, respectively) speeds
at larger Te/Ti in the high-βi regime.

The organization of the paper is as follows. In Sec-
tion 2, we provide details about the simulation setup and
parameters. In Section 3, we discuss our technique for
extracting from PIC simulations the heating efficiencies.
In Section 4, we discuss the dependence of the reconnec-
tion rate, the outflow speed and the electron and proton
heating efficiencies on the flow conditions. We conclude
in Section 5, with a summary and discussion.

2. SIMULATION SETUP

We use the electromagnetic PIC code TRISTAN-MP
to perform fully-kinetic simulations of reconnection
(Buneman 1993; Spitkovsky 2005). We employ two-
dimensional (2D) simulations, but all three components
of velocity and electromagnetic fields are tracked. Our
setup is similar to that described in Sironi & Spitkovsky
(2014). The initial field configuration is illustrated in
Fig. 1. From the red to the blue region, the polarity of
the inflow magnetic field reverses, as shown by the white
arrows. An out-of-plane current, in the green region, sat-
isfies Ampere’s law for the curl of the magnetic field. The
reconnection layer is initialized in Harris equilibrium,
with a magnetic field profile B = B0 tanh(2πy/∆) x̂. We
focus on anti-parallel reconnection, postponing the study
of guide field effects to a future work. The field strength
is parameterized via the magnetization,

σw =
B2

0

4πw
, (3)

where B0 is the magnitude of the magnetic field in the
inflow region, w = (ρe +ρi)c

2 + γ̂eue + γ̂iui is the enthalpy
density per unit volume, and ρe = men0, ρi = min0, γ̂e,
γ̂i, and ue, ui are the rest mass densities, adiabatic in-
dices, and internal energy densities, respectively, of elec-
trons and protons. Here, n0 is the electron number den-
sity in the inflow region, me and mi are the electron and
proton masses. The definition of magnetization in Eq. 3
reduces to Eq. 2 in the limit of non-relativistic temper-
atures, but for relativistic particles the enthalpy in σw
properly accounts for the relativistic inertia.

In all runs, we set the current sheet thickness to be
∆ = 40 c/ωpe, where c/ωpe is the electron skin depth,

ωpe =

√
4πn0e2

me

(
1 +

θe

γ̂e − 1

)−1/2

(4)
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is the electron plasma frequency. Here, θe = kBTe/mec
2

is the dimensionless electron temperature, whereas e is
the electric charge. The size of the computational do-
main in the x direction is Lx = 4318 c/ωpe, which is
large enough to resolve both electron and proton heat-
ing physics (see Appendix A, where we study the con-
vergence of our results with respect to the domain size).
While Lx in units of c/ωpe remains fixed across our simu-
lations, the domain size in units of the proton skin depth

c

ωpi
≈ c

ωpe

√
mi

me

(
1+

θe

γ̂e − 1

)−1/2(
1+

θi

γ̂i − 1

)1/2

, (5)

increases as electrons become more relativistic (see
Tab. 1). Here, θi = kBTi/mic

2 is the dimensionless pro-
ton temperature.

We typically employ periodic boundary conditions
along the x direction, but we have tested that our main
results do not change when using outflow boundary con-
ditions, similar to those described in Sironi et al. (2016).
With the latter, it is possible to study the dynamical evo-
lution of the reconnection system over multiple Alfvénic
crossing times, whereas the evolution of a periodic simu-
lation is limited to a few Alfvénic crossing times, before
the periodic boundaries start affecting the reconnection
physics. We compare the results of simulations with out-
flow and periodic boundaries in Appendix B.

Fresh plasma, described by a Maxwell-Jüttner distri-
bution, is introduced at two moving injectors. Each in-
jector recedes from y = 0 at the speed of light, and the
simulation domain is enlarged when the injectors reach
the boundaries, so that the injectors may continue re-
ceding in the ±ŷ directions. This strategy — described
in more detail in Sironi & Spitkovsky (2011) — ensures
that the domain includes all causally connected regions
throughout the evolution of the system, while making ef-
ficient use of the available memory and computing time.
Additional computational optimization is achieved by al-
lowing the injectors to periodically “jump” backwards
(toward y = 0), removing all particles beyond the in-
jectors and resetting the electromagnetic fields to their
initial values (Sironi & Spitkovsky 2011).

A hot, over-dense population of particles is initial-
ized in the current sheet to balance the magnetic pres-
sure from outside. These particles have temperature
kBTcs/mic

2 = σi/2η, where η is the over-density relative
to the inflowing plasma; we use η = 3. Reconnection
is triggered at the initial time by cooling by hand the
over-dense population in the middle of the current sheet
(x, y) ≈ (0, 0). This causes a local collapse of the layer,
leading to the formation of an X-point, after which the
system evolves self-consistently (Sironi et al. 2016).

Adequate resolution of the electron skin depth c/ωpe

is required for accuracy and stability of PIC codes.
We use 4 cells per electron skin depth, and fix c =
0.45 cells/timestep, which is less than required by the
Courant-Friedrichs-Lewy condition in 2D. The time res-
olution of our simulations is then ∆t ≈ 0.1ω−1

pe , which
properly captures the physics at electron scales. For two
cases (βi = 0.0078 and βi = 2, with the same σw = 0.1
and Te/Ti = 1), we have tested for convergence by vary-
ing the spatial resolution (we have tested with c/ωpe = 2
or 8 cells), which has the effect of changing also the tem-
poral resolution (we still fix c = 0.45 cells/timestep). For

ID A[0] A[1] A[2] A[3] A[4]

βi 0.0078 0.031 0.13 0.50 2.0

βe 0.00078 0.0031 0.013 0.050 0.20

θi 0.00041 0.0016 0.0066 0.028 0.16

θe 0.0010 0.0041 0.017 0.070 0.39

υi 0.00061 0.0024 0.010 0.043 0.27

υe 0.0015 0.0062 0.025 0.11 0.78

σi 0.10 0.10 0.10 0.11 0.15

Te/Ti 0.10 0.1 0 0.10 0.10 0.10

Nppc 16 16 16 16 64

c/ωpi 20 20 20 19 16

Lx[c/ωpi] 860 870 870 890 1100

ID B[0] B[1] B[2] B[3] B[4]

βi 0.0078 0.031 0.13 0.50 2.0

βe 0.0023 0.0094 0.038 0.15 0.60

θi 0.00041 0.0016 0.0066 0.029 0.18

θe 0.0031 0.012 0.050 0.21 1.3

υi 0.00061 0.0025 0.010 0.044 0.32

υe 0.0046 0.019 0.079 0.39 3.3

σi 0.10 0.10 0.10 0.11 0.17

Te/Ti 0.30 0.30 0.30 0.30 0.30

Nppc 16 16 16 16 64

c/ωpi 20 20 19 17 11

Lx[c/ωpi] 870 870 890 1000 1600

ID C[0] C[1] C[2] C[3] C[4]

βi 0.0078 0.031 0.13 0.50 2.0

βi 0.0078 0.031 0.13 0.50 2.0

θi 0.00041 0.0016 0.0067 0.031 0.39

θe 0.010 0.041 0.17 0.77 9.9

υi 0.00061 0.0024 0.010 0.048 0.79

υe 0.015 0.064 0.30 1.8 29

σi 0.10 0.10 0.10 0.12 0.38

Te/Ti 1.0 1.0 1.0 1.0 1.0

Nppc 16 16 16 16 64

c/ωpi 20 19 17 12 5.0

Lx[c/ωpi] 870 890 990 1500 3400

Table 1
Initial parameters for the mi/me = 25 simulations with our
fiducial σw = 0.1. The proton skin depth c/ωpi, calculated
according to Eq. 5, is expressed in number of cells. The definition
of the various quantities is in Section 2. Simulation sets A, B, and
C differ by the initial temperature ratio, with Te/Ti = 0.1, 0.3,
and 1, respectively. From left to right, βi increases. We fix the
mass ratio mi/me = 25, magnetization σw = 0.1, electron skin
depth c/ωpe = 4 cells, and domain size Lx = 4318 c/ωpe. We also
perform a number of additional simulations, up to the realistic
mass ratio mi/me = 1836 and with higher magnetizations
(σw = 0.3, 1, 3, 10), as described in Section 2.

both choices of βi, our results are essentially the same
(see Appendix C, where we study the convergence of our
results with respect to the spatial resolution of the elec-
tron skin depth).

For simulations with βi = 2, we use 64 particles per
cell (Nppc), whereas Nppc = 16 at lower βi. We have
found that these values of Nppc are sufficient to keep
numerical heating under control, even for Te/Ti � 1. We
have extensively tested the impact of numerical heating
in simulations with βi = 2 for several values of Nppc, in
some cases up to Nppc = 256; see Appendix D for some
discussion.
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In our parameter scan (Tab. 1), we fix σw and study
the reconnection physics as a function of βi and Te/Ti.
We choose to fix σw rather than σi, given that the param-
eter space we probe involves relativistic particles whose
thermal contribution to the inertia is non-negligible (see
Eq. 3). For a constant σw, the Alfvén velocity

vA

c
=

√
σw

1 + σw
, (6)

remains fixed across our simulations. The reconnection
layer is evolved for ∼ 1 Alfvénic crossing time (tA =
Lx/vA), which for our reference magnetization of σw =
0.1 and Lx = 4318 c/ωpe corresponds to t ≈ 14000ω−1

pe .
The focus of our investigation is the so-called trans-

relativistic regime of reconnection, hence we select σw =
0.1 as our fiducial magnetization, and we vary βi from
0.0078 to 2. Additionally, we study the effect of the ini-
tial electron-to-proton temperature ratio Te/Ti on the
reconnection physics. For each value of βi, we run three
simulations with Te/Ti = 0.1, 0.3, and 1. Our choice of
initial parameters, both physical (σw, βi, and Te/Ti) and
computational (Nppc, c/ωpe), is summarized in Tab. 1.
Other derived physical parameters in the inflow region,
namely the electron plasma βe = βiTe/Ti, the dimension-
less proton and electron temperatures θi = kBTi/mic

2

and θe = kBTe/mec
2, the dimensionless internal energy

per particle for protons and electrons υi ≡ ui/n0mic
2 and

υe ≡ ue/n0mec
2, and the ratio σi of magnetic pressure

to rest mass energy density, are also included. In addi-
tion to the simulations listed in the table, which employ
mass ratio mi/me = 25, we also investigate mass ratios
mi/me = 10, 50, and 1836 for βi in the range 5×10−4−2
(with fixed σw = 0.1 and a fixed electron-to-proton tem-
perature ratio Te/Ti = 1). With realistic mass ratios
and Te/Ti = 1, we also explore the βi-dependence of the
heating efficiency at higher values of the magnetization:
σw = 0.3, 1, 3 and 10.

3. TECHNIQUE FOR EXTRACTING THE HEATING
EFFICIENCY

In this section, we discuss our method of extracting
the heating efficiency from PIC simulations. First, in
Section 3.1, we discuss the time evolution of the recon-
nection layer for two representative cases at low and high
βi. Then, in Section 3.2, we describe the identification
of inflow (upstream) and outflow (downstream) regions.
Lastly, in Section 3.3, we isolate the irreversible heating,
i.e., the part associated with a genuine increase in en-
tropy, from the reversible heating induced by adiabatic
compression.

3.1. Time evolution of the reconnection layer

To illustrate the time evolution of the reconnection
layer, we show in Fig. 2 a few snapshots of density
from a representative simulation (A[0] in Tab. 1) with
βi = 0.0078 and Te/Ti = 0.1. We plot the 2D profile of
the number density in units of the initial value, n/n0. In
each panel, we show only a small fraction of the domain
in the y direction (we present only the region closest to
the current sheet), and the full extent of the domain in
x. White lines with arrows show magnetic field lines.

Panels (a)–(c) show the time evolution of the system
over ∼ 1 Alfvénic crossing time. By removing by hand

the plasma pressure at the center of the current sheet
(x ∼ 0), we trigger a local collapse of the layer, forming
an X-point. After the formation of the central X-point,
two reconnection “wavefronts” are pulled outwards in
the ±x̂ directions by the magnetic tension of the field
lines, and the fronts recede from the center at close to
the Alfvén speed. In panels (a), (b), and (c), the wave-
fronts are located at x ≈ ±400, 1100, and 1800 c/ωpe,
respectively, corresponding to the innermost (i.e., closest
to x = 0) locations of the large semi-circular red/yellow
density blobs.

The fronts carry away the hot particles initialized in
the current sheet. With periodic boundary conditions,
this leads to the formation of a primary island at the
boundary of the simulation domain (in Fig. 2(c), located
at x ≈ ±2200 c/ωpe). The primary island continues to
accrete plasma as the system evolves, but eventually it
grows so large that further accretion of magnetic flux into
the layer is inhibited, and reconnection stops.

The primary island shows the hottest electron tem-
peratures. Here, electron heating might be due in part
to reconnection, but also in part to weak shocks at the
interface between the reconnection outflow and the is-
land. In addition, the plasma conditions in the island
are sensitive to our arbitrary choice for the current sheet
initialization. For these reasons, we choose not to focus
on the heating physics in the primary island.

In this paper, we focus exclusively on the outflow (i.e.,
before the the plasma reaches the primary island; see
also Shay et al. (2014), in the context of non-relativistic
reconnection), shown by the green region between the
two wavefronts in Fig. 2. In Section 3.2, we detail the
steps we take to avoid contamination of our temperature
measurements by the primary island.

As the two reconnection fronts recede from the center,
plasma flows into the reconnection layer and particles are
heated and accelerated as a bulk, flowing along ±x̂ to-
ward the domain boundaries. The dense (green) region
in between the two wavefronts is the reconnection out-
flow. A key feature of low-βi simulations is the forma-
tion in the reconnection exhausts of secondary islands
due to the secondary tearing instability, e.g., Fig. 2(c)
at x ≈ 300 c/ωpe and x ≈ −900 c/ωpe (Daughton &
Karimabadi 2007; Uzdensky et al. 2010). Between each
pair of secondary islands, there is a secondary X-point,
e.g., at x ≈ −1000 c/ωpe. We discuss the structure of the
reconnection layer as a function of βi in Section 4.1.

3.2. Upstream and downstream identification

We now describe how we determine which computa-
tional cells in the simulation domain belong to the up-
stream (or, inflow) and downstream (or, outflow) regions.
We identify downstream cells by using a particle mixing
criterion between the two sides of the current sheet. Par-
ticles that originate above y = 0 (top of the domain) are
tagged, to distinguish them from particles originating be-
low y = 0 (bottom of the domain).

In Fig. 3, we show the ratio of top-to-total number
density. Away from the current sheet, i.e., in the blue
and red regions, there is no mixing between the two
populations. Particles from the two sides of the current
sheet get mixed as they enter the reconnection layer; the
region with the greatest amount of mixing is shown in
white/light-yellow. We compute the ratio of top-particle
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Figure 2. Time evolution of a representative low-βi simulation (A[0] in Tab. 1), with βi = 0.0078 and Te/Ti = 0.1. The snapshots

show number density of electrons in units of the initial density at (a): t = 3713ω−1
pe ≈ 0.25 tA; (b): t = 7200ω−1

pe ≈ 0.50 tA; (c):

t = 10688ω−1
pe ≈ 0.75 tA. We show the whole dimension of the box in x, and only a small portion close to the center in y. A characteristic

feature of this and other low-βi simulations is the presence of secondary magnetic islands, i.e., structures like those at x ≈ 300 c/ωpe and
x ≈ −900 c/ωpe (panel (c)). These are to be distinguished from the large primary island at x ≈ ±2200 c/ωpe, whose properties depend
on choices at initializiation. As the primary island grows, it will eventually inhibit further accretion of magnetic flux and the reconnection
process will terminate.

density ntop to total-particle density ntot = n (including
particles from both top and bottom) in each cell. If this
ratio in a given cell exceeds a chosen threshold rdown and
is below the complementary threshold, i.e.,

rdown <
ntop

ntot
< 1− rdown, (7)

then the cell is counted as one where plasma has re-
connected (i.e., the cell belongs to the reconnection
downstream). This technique is similar to that used
in Daughton et al. (2014). In our analysis, we choose
rdown = 0.3, but we have verified that the identification
of the reconnection region, and therefore the heating ef-
ficiencies that we extract, do not significantly depend on
this choice. For rdown in the range 0.1 – 0.3, the heat-
ing efficiencies typically differ only by ∼ 15%. The choice
rdown = 0.3 is restrictive enough to exclude contamina-
tion by the upstream region. This is especially impor-
tant for high βi, where, even if the electron gyrocenter is
located in a cell that is safely part of the downstream,
if the cell is close to the interface between downstream
and upstream, the particle gyro-motion may temporarily
lead this “downstream” electron to the upstream side. If
rdown were to be too small, the region where the electron
motion extends into the upstream might be incorrectly
counted as part of the downstream, biasing our temper-
ature estimates toward lower values. Our choice of rdown

is to some extent arbitrary, but we have found that a

relatively large value like rdown = 0.3 is suitable for iden-
tifying the genuine reconnection downstream.

In Fig. 4, we show 1D plots of the density fraction
of tagged particles and the temperature profiles along
the y direction, in a slice located at x ≈ 1000 c/ωpe.
In panel (a), we show the profiles of the ratio of top-
and bottom-density to total density, denoted by solid
and dashed lines, respectively, at time t ≈ 8400ω−1

pe ≈
0.60 tA. Between the two vertical dotted lines, the ratio
of top-to-total density ranges between 0.3 and 0.7, as
required to satisfy our mixing criterion. As shown in
panel (b), both the electron (blue) and the proton (red)
temperature in the region between the vertical lines are
remarkably uniform, proving that our mixing criterion
can confidently capture the reconnection downstream.

The upstream region is identified via(
ntop

ntot
< rup

)
or

(
ntop

ntot
> 1− rup

)
, (8)

and we choose rup = 3 × 10−5. As before, this defi-
nition avoids contamination of the upstream region by
any “downstream” particles that leak out of the current
sheet. In practice, a buffer zone with a width on the
order of a few tens of c/ωpe is established between the
regions we identify as upstream and downstream.

While Eq. 7 (Eq. 8, respectively) identifies the whole
reconnection outflow (inflow, respectively), we enforce an
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(A[0] in Tab. 1) at time t ≈ 11000ω−1
pe ≈ 0.8 tA. The green and black contours show the boundaries of the regions we use to calculate the

downstream and upstream temperatures, respectively. The box edges at the interface between upstream and downstream change as the
system evolves, and are calculated according to Eqs. 7 and 8. Particle mixing serves as a tracer for the downstream region. Particles from
the top (y > 0) of the domain are tagged; as they enter the reconnection layer, they mix with particles from the bottom (y < 0) of the
domain. The reconnection downstream is identified via the mixing fraction ntop/ntot, and a choice of the threshold rdown, as in Eq. 7.
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Figure 4. (a): 1D profile along the y direction of top-to-total
particle density ratio (solid line) and bottom-to-total ratio (dashed

line) in a slice at x ≈ 1000 c/ωpe, at time t ≈ 8400ω−1
pe ≈ 0.60 tA.

The profiles are from the same simulation we show in Fig. 3 (with
βi = 0.0078 and Te/Ti = 0.1). Vertical dotted lines indicate the
locations in x where the top-to-total density ratio is between 0.3
and 0.7 (at y ≈ −25 and 25 c/ωpe, respectively). Between the
vertical dotted lines (i.e., in the region we define as the reconnection
downstream), mixing has efficiently occurred. (b): Proton and
electron temperature profiles in the same region. In between the
vertical dotted lines, the temperature profiles are nearly flat.

additional constraint on the downstream and upstream
regions that we employ to extract our heating efficien-
cies. We select downstream regions far enough from the
central X-point that the electron and proton outflow bulk
velocities have saturated, and also that the electron and
proton temperatures have reached their asymptotic val-

ues. At the same time, we select these regions to be far
enough from the boundaries to avoid contamination from
the material inside the primary island, and only cap-
ture the genuine reconnection outflow. The downstream
region that satisfies these constraints (identified by the
green contours in Fig. 3) varies for different simulations:
for βi < 2 it is located at a distance of ∼ 630 c/ωpe from
the center, whereas for βi = 2 it is at ∼ 350 c/ωpe from
the center (as we show below, the primary island tends
to be larger at higher βi). The extent of the downstream
region across the layer (i.e., along y) is determined by
the mixing criterion in Eq. 7, while the length along the
layer is fixed at ∼ 170 c/ωpe (see the green contours in
Fig. 3). The corresponding upstream values are mea-
sured at the same distance from the center of the layer,
within the black contours in Fig. 3. Their exent along
the y direction does not significantly affect our results.

3.3. Characterization of heating

In this section, we describe our assessment of parti-
cle heating. First, in Section 3.3.1, we describe our cal-
culation of rest-frame internal energy and temperature.
Next, in Section 3.3.2, we define ratios that characterize
the total amount of heating. Finally, in Section 3.3.3, we
provide a more detailed analysis of the heating physics by
isolating the effect of a genuine entropy increase (which
we call “irreversible heating”) from the contribution of
adiabatic compression (giving “adiabatic heating”).

3.3.1. Temperature calculation

We measure the total particle energy density in the
simulation frame, then extract the corresponding fluid-
frame internal energy and temperature, by employing the
perfect, isotropic fluid approximation, i.e.

Tµν = (e+ p)UµUν − pgµν , (9)

where Tµν is the stress-energy tensor of the fluid, e is
the rest-frame energy density, p is the pressure, Uµ is
the fluid dimensionless four-velocity, and gµν is the flat-
space Minkowski metric. The rest-frame energy density
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is the sum of rest-mass and internal energy densities, i.e.

e = nmc2 + u (10)

= nmc2 +
p

γ̂ − 1
, (11)

where n is the rest-frame particle number density, u is
the internal energy density, and γ̂ is the adiabatic index.
The dimensionless internal energy per particle in the fluid
rest frame υs may be expressed as

υs =
(T 00
s /nsmsc

2 − Γs)Γs
1 + γ̂s(Γ2

s − 1)
, (12)

where T 00
s is the total energy density in the simulation

frame, ns is the lab-frame particle number density, Γs is
the Lorentz factor corresponding to the local fluid veloc-
ity, γ̂s is the adiabatic index, and the subscript s = e, i
refers to the particle species.

To make use of Eq. 12, we need to express the adiabatic
index γ̂s as a function of the internal energy per particle,
so that the equation may be solved iteratively. For a
plasma described by a Maxwell-Jüttner distribution with
dimensionless temperature θs,

fMJ(γ, θs) ∝ γ
√
γ2 − 1 exp (−γ/θs) , (13)

where γ denotes the particle Lorentz factor, the dimen-
sionless internal energy is given by

υs =

∫∞
1
γfMJ(γ, θs)dγ∫∞

1
fMJ(γ, θs)dγ

− 1. (14)

We have numerically evaluated the integral on the right
hand side for a range of temperatures and thereby pro-
duced interpolating tables for γ̂s(υs) and θs(υs), to be
used for finding υs in Eq. 12.

Eqs. 9 and 12 assume that the stress-energy tensor
is diagonal and isotropic in the fluid frame. We have
explicitly tested this assumption by measuring all the
components of the stress-energy tensor in our computa-
tional domain. By boosting into the local fluid frame,
we can calculate all the components of the pressure
tensor. We find that the off-diagonal components are
generally negligible. As regard to the diagonal compo-
nents, we quantify the degree of anisotropy with the tem-
perature ratios Txx/Ttot, Tyy/Ttot, and Tzz/Ttot, where
Ttot = (Txx + Tyy + Tzz)/3. For an isotropic fluid,
Txx/Ttot = Tyy/Ttot = Tzz/Ttot = 1. For electrons in the
reconnection downstream, we find that these ratios typ-
ically lie in the range Tyy/Ttot ≈ Tzz/Ttot ≈ 0.9 – 0.95
and Txx/Ttot ≈ 1.2 – 1.1 (see Appendix E for further
discussion, including the dependence of the anisotropy
on βi and Te/Ti). We find greater anisotropy along the
outflow direction x̂ than either ŷ or ẑ. This is in quali-
tative agreement with the findings of Shay et al. (2014),
who demonstrated that the electron pressure tensor in
the immediate reconnection exhausts is anisotropic, with
the component parallel to the local magnetic field larger
than the perpendicular component.

As an additional test, we have also measured the tem-
perature and internal energy via an explicit boost of the
stress-energy tensor into the fluid rest frame, and com-
pared the results to those computed by employing the
perfect-fluid approximation as described above. We find

that the disagreement between the two methods is only
of order ∼ 1%, providing a posteriori a justification for
the perfect-fluid assumption.

3.3.2. Total heating

The main focus of our investigation is particle heating
by reconnection, and how the heating efficiency depends
on the upstream parameters. From each simulation, we
extract a dimensionless ratio Mue,tot, which we define as

Mue,tot ≡
υe,down − υe,up

σimi/me
. (15)

The numerator is the difference in dimensionless internal
energy per electron between downstream and upstream,
while the denominator represents (apart from a factor
of two) the available magnetic energy per electron in
the upstream, in units of the electron rest mass energy
(= B2

0/4πn0mec
2). The ratio Mue,tot is then a measure

of the efficiency of reconnection in converting available
magnetic energy to electron heating. Alternatively, the
efficiency parameter may be phrased in terms of the di-
mensionless temperature,

MT e,tot ≡
θe,down − θe,up

σimi/me
, (16)

as in Shay et al. (2014). We define analogous ratios for
protons as

Mui,tot ≡
υi,down − υi,up

σi
, (17)

and

MT i,tot ≡
θi,down − θi,up

σi
. (18)

For the results presented below, we average the dimen-
sionless internal energy and temperature appearing in
the above equations over time, starting at ∼ 0.3 Alfvénic
crossing times (or equivalently, ∼ 4500 ω−1

pe ), when the
two reconnection wavefronts — and with them, the parti-
cles initialized in the current sheet — have moved beyond
the region that we use for our computations (green and
black boxes in Fig. 3). We typically time-average our
results over an interval of ∼ 0.3 Alfvénic crossing times.

3.3.3. Adiabatic and irreversible heating

When gas is adiabatically compressed, its internal en-
ergy increases while its entropy remains constant. The
reconnecting plasma may experience such adiabatic heat-
ing, since the downstream region is denser than the up-
stream (see Fig. 2). However, adiabatic heating is not a
genuine signature of the conversion of field energy into
particle energy. We isolate the irreversible heating gen-
erated by magnetic field dissipation by subtracting out
the adiabatic heating from the total particle heating.

The predicted internal energy per particle in the
downstream resulting from adiabatic compression alone
(which we shall call υad

s,down for species s) is calculated
from the upstream internal energy per particle υs,up, the
upstream rest-frame number density n̄s,up and the down-
stream rest-frame number density n̄s,down using the sec-
ond law of thermodynamics for constant entropy,

dUs = −psdV (19)
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From the ideal gas equation of state, the pressure is ps =
n̄skBTs = (γ̂s − 1)us. Using the relation Us/V = us =
υsn̄smsc

2, we can integrate Eq. 19 to obtain∫ υad
s,down

υs,up

1

(γ̂(υs)− 1)υs
dυs − log

(
n̄s,down

n̄s,up

)
= 0. (20)

We compute the argument of the logarithm in Eq. 20
as the ratio of downstream to upstream rest-frame den-
sity, spatially averaged over the regions marked in Fig. 3.
The lower bound of the integral υs,up is computed as
a density-weighted spatial average in the selected up-
stream region. The adiabatic index γ̂s(υs) is tabulated
as discussed above. We numerically solve Eq. 20 for
the predicted downstream dimensionless internal energy
per particle υad

s,down resulting from adiabatic compression.
We refer to the corresponding dimensionless tempera-
ture as θad

s,down. We call the difference between the initial
and the predicted dimensionless temperature or internal
energy per particle due to adiabatic compression, i.e.,
∆θs,ad ≡ θad

s,down − θs,up and ∆υs,ad = υad
s,down − υs,up, as

the “adiabatic” component of heating.
The irreversible heating, which is associated with a

genuine increase in entropy, is the residual between the
total heating and the adiabatic heating:

∆θs,irr = (θs,down − θs,up)−∆θs,ad, (21)

∆υs,irr = (υs,down − υs,up)−∆υs,ad. (22)

As in Section 3.3.2, we introduce efficiency ratios to
characterize the irreversible and adiabatic heating of elec-
trons,

MT e,irr ≡
∆θe,irr

σimi/me
, MT e,ad ≡

∆θe,ad

σimi/me
, (23)

Mue,irr ≡
∆υe,irr

σimi/me
, Mue,ad ≡

∆υe,ad

σimi/me
, (24)

and define analogous ratios for protons

MT i,irr ≡
∆θi,irr

σi
, MT i,ad ≡

∆θi,ad

σi
, (25)

Mui,irr ≡
∆υi,irr

σi
, Mui,ad ≡

∆υi,ad

σi
. (26)

4. RESULTS

In this section, we describe our main results, focusing
on the dependence of the heating efficiency on the plasma
conditions. First, in Section 4.1, we present the dynamics
of the reconnection layer, and describe the main differ-
ences between low-βi and high-βi cases, for our fiducial
magnetization σw = 0.1 and mass ratio mi/me = 25.
Next, in Section 4.2, we discuss the inflow and outflow
rates as a function of βi and Te/Ti. Then, in Section 4.3,
we show the dependence of electron and proton heat-
ing on βi and Te/Ti, still for our fiducial magnetization
σw = 0.1 and mass ratio mi/me = 25. In Section 4.4, we
extend our results for Te/Ti = 1 and σw = 0.1 up to the
physical mass ratio mi/me = 1836, emphasizing the βi-
dependence of the particle heating efficiencies. Finally,
in Section 4.5, we show how the heating physics changes
when the magnetization σw extends above unity (i.e., in
the regime of ultra-relativistic reconnection), for mass
ratio mi/me = 1836 and temperature ratio Te/Ti = 1.

4.1. Reconnection physics as a function of βi

The physics of reconnection shows a marked differ-
ence between low- and high-βi regimes. In Figs. 5 and
6, we present various fluid quantities for representative
low- and high-βi simulations, respectively (βi = 0.0078
in Fig. 5 and βi = 2 in Fig. 6). In both cases, σw = 0.1,
Te/Ti = 0.1 and mi/me = 25. At t = 11250ω−1

pe ≈
0.75 tA, we show 2D plots of: (a) the total density in the
simulation frame in units of the initial density, n/n0; (b)
the dimensionless electron temperature θe; (c) the mag-
netic energy fraction εB = B2/8πn0mic

2; (d) the inflow
velocity vin/vA = v · ŷ/vA (vA is the Alfvén speed), and
(e) the outflow velocity vout/vA = v · x̂/vA.

A striking difference between the simulations shown in
Figs. 5 and 6 is that, while the reconnection outflow at
high βi is nearly homogeneous, a number of secondary
magnetic islands appear at low βi (see Fig. 5(a)). The
secondary islands are over-dense, and at their center they
can reach temperatures a few times larger than the bulk
of the outflow (Fig. 5(b)). They also correspond to peaks
in magnetic energy (Fig. 5(c)).

The difference in electron temperature between inflow
and outflow regions is more pronounced in the low- than
in the high-βi case (compare Figs. 5(b) and 6(b)). How-
ever, as we demonstrate in Section 4.3, the fraction of
available magnetic energy converted into total electron
heating is roughly comparable between the two cases.

The inflow velocity vin/vA = v · ŷ/vA is shown in panel
(d). For low-βi, the inflow velocity is |vin|/vA ≈ 0.08. It
is nearly uniform in the upstream, with the exception
of the regions ahead of the secondary islands, where the
velocity reverses its sign relative to the ambient inflow
(see, e.g., Fig. 5(d) at x ≈ −1100 c/ωpe). This rever-
sal occurs as the secondary island moves along the out-
flow direction, pushing aside the inflowing plasma. For
high-βi, the plasma inflow is remarkably uniform, with
|vin|/vA ≈ 0.04, which is half the value of the low-βi case.
The inflow velocity at high βi shows no reversals near the
reconnection exhausts, as there are no secondary islands.

The outflow velocity vout/vA = v · x̂/vA is shown in
panel (e). For low-βi, the outflow speed nearly reaches
the Alfvén limit, |vout|/vA ≈ 1, whereas for high-βi it
approaches a smaller value, |vout|/vA ≈ 0.6. For both
low and high βi, the outflow velocity is nearly uniform in
the reconnection exhausts, but it drops close to the peri-
odic boundaries at x ≈ ±2200, as the outflowing plasma
accretes onto the primary island.

We show in Fig. 7 a direct comparison between one
low-βi and one high-βi simulation. The left column in
Fig. 7 refers to βi = 0.0078 (the same as in Fig. 5),
whereas βi = 0.5 for the right column. In both cases,
σw = 0.1, Te/Ti = 0.1 and mi/me = 25. In the top row,
we show the profile along x of the outflow velocity, for
protons (red) and electrons (blue). We find that elec-
trons move slightly faster than protons in the vicinity of
the central X-point, but at larger distances the speeds of
the two species are the same, and they saturate at a fixed
fraction of the Alfvén limit. We show in the middle row
of panels the x-profile of the dimensionless electron tem-
perature θe, in the upstream (magenta) and downstream
(green). The secondary magnetic islands present in the
low-βi simulation (panel (c)) are correlated with spikes
in the downstream electron temperature (see the peak at
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βi=0.0078, Te/Ti=0.1

Figure 5. 2D structure at t = 11250ω−1
pe ≈ 0.75 tA from a representative low-βi simulation (A[0] in Tab. 1) with βi = 0.0078, σw = 0.1,

Te/Ti = 0.1 and mi/me = 25. We present 2D plots of (a): particle density in units of the upstream initial value, n/n0, with overplotted
magnetic field lines; (b): dimensionless electron temperature, θe; (c): logarithm of the magnetic energy fraction, εB = B2

0/8πn0mic
2; (d):

inflow velocity, in units of Alfvén speed vin/vA = v · ŷ/vA; (e): outflow velocity, in units of Alfvén speed vout/vA = v · x̂/vA. We show
the full extent of the domain in the x direction (Lx = 4318 c/ωpe), and only a small fraction of the box close to the current sheet in the y
direction. The primary island, which contains the particles initialized in the current sheet, can be seen at the boundaries (x = ±2200 c/ωpe).
As shown in panel (a), the density reaches n/n0 ≈ 2.3 in the bulk of the outflow, with sharp increases up to n/n0 ≈ 5 in the core of
secondary islands (e.g., at x = −1000 c/ωpe and x = 300 c/ωpe). The primary island has a high density throughout its interior, n/n0 ≈ 5.
Similarly, the temperature (panel (b)) is uniform θe ≈ 0.1 in the bulk of the outflow, with spikes up to θe ≈ 0.25 at the center of secondary
islands. The primary island has a temperature θe ≈ 0.15 throughout its interior. In panel (c), we show that the magnetic energy fraction
εB is extremely small in the outflow, εB . 0.01. The inflow velocity in panel (d) is a fraction of the Alfvén limit |vin|/vA ≈ 0.08, and the
outflow velocity in panel (e) approaches the Alfvén limit, |vout|/vA ≈ 1.
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Figure 6. 2D structure at t = 11250ω−1
pe ≈ 0.75 tA from a representative high-βi simulation (A[4] in Tab. 1) with βi = 2, σw = 0.1,

Te/Ti = 0.1 and mi/me = 25 (i.e., apart from βi, with the same parameters as in Fig. 5). The panels show the same quantities as in Fig. 5.
As shown in panel (a), the density is roughly n/n0 ≈ 1.2 in the bulk of the outflow, which is only slightly larger than the upstream density.
In the primary island, the density reaches n/n0 ≈ 4. The electron temperature (panel (b)) is nearly uniform in the reconnection exhausts
(i.e., within a distance of ≈ 700 c/ωpe from the central X-point), with θe ≈ 0.6. Within the primary island, the temperature reaches
θe ≈ 0.8. In panel (c), we present the logarithm of magnetic energy fraction εB , showing that the reconnection layer is weakly magnetized
(εB . 0.01). Panel (d) shows that the inflow velocity is nearly uniform in the upstream, with a typical value |vin|/vA ≈ 0.04. Panel (e)
shows that the outflow velocity in the reconnection exhausts is |vout|/vA ≈ 0.6. At the center of the primary island, x ≈ ±2200 c/ωpe, the
plasma from the reconnection outflows comes to rest, |vout|/vA ≈ 0.

x ≈ −500 c/ωpe in Fig. 7(b)). Aside from the tempera-
ture spikes at low βi, the two panels in the middle row
of Fig. 7 demonstrate that, far enough from the central
X-point, the electron temperature is nearly uniform.

To estimate the reconnection heating efficiency, we
measure the downstream temperature in the two slabs
delimited by the vertical dotted lines in Fig. 7(b) and
(e) (more precisely, within the green contours in Fig. 3).
The time evolution of the total electron heating effi-
ciency MT e,tot, of the adiabatic contribution MT e,ad and
of the irreversible component MT e,irr are shown in Fig. 8
with black, dashed blue and dashed red lines, respec-
tively. The top panel refers to a low-βi simulation with
βi = 0.0078, whereas the bottom panel refers to the high-
βi case βi = 2. In both cases, σw = 0.1, Te/Ti = 0.1 and
mi/me = 25. The horizontal axis in the figure starts from
t = 5000ω−1

pe , which corresponds to the time when the
two reconnection wavefronts pass beyond the region that
we employ for calculating the downstream quantities (as
discussed above, after this time the measurements are
no longer affected by our choice of initialization of the

current sheet).1 While the heating efficiencies are nearly
constant in time for high βi (bottom panel), the tempo-
ral profiles at low βi (top panel) present quasi-periodic
modulations. They mark the passage of secondary is-
lands — whose temperature is typically hotter than the
bulk outflow — through the region used for our computa-
tions. To minimize the temperature variations associated
with secondary islands, we average the heating efficien-
cies over time, as described in Section 3.3.2. In doing
so, the results we obtain are a reliable assessment of the
steady-state heating physics in reconnection.

Panels (a) and (b) in Fig. 8 also demonstrate that
the fractional contributions of adiabatic and irreversible
heating to the total electron heating significantly depend
on βi, as we further discuss in Section 4.3. In the low-
βi regime, adiabatic heating is unimportant as compared
to the irreversible part, whereas the two components are
comparable at high βi.

1 This time is typically in the range t ≈ 4000 − 5000ω−1
pe , with

marginal dependence on βi and on the initial sheet thickness ∆.
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Figure 7. Comparison between a low-βi (left column, with βi = 0.0078, A[0] in Tab. 1) and a high-βi (right column, with βi = 0.5,

A[3] in Tab. 1) simulation, at time t = 9225ω−1
pe ≈ 0.65 tA. In both cases, σw = 0.1, Te/Ti = 0.1 and mi/me = 25. (a),(d): 1D profiles

along x (averaged along y within the reconnection downstream, as identified by Eq. 7) of proton (red) and electron (blue) outflow velocity
in units of the Alfvén speed, vout/vA; (b),(e): 1D profiles along x of the upstream (magenta) and downstream (green) dimensionless
electron temperature, θe (the two slabs in between the vertical dotted lines indicate the regions we use to calculate the downstream and
upstream temperatures); (c),(f): 2D plots of log(θe). In both the low- and high-βi cases, the spatial profiles of outflow velocity and electron
temperature show that the downstream region reaches a quasi-steady state.

4.2. Dependence of inflow and outflow velocity on βi
and Te/Ti

In Fig. 9, we show the dependence on βi and Te/Ti

of various fluid quantities, from a suite of simulations
with fixed σw = 0.1 and mi/me = 25. We present
the (a) inflow velocity normalized to the Alfvén speed
|vin|/vA; (b) outflow velocity normalized to the Alfvén
speed |vout|/vA; (c) ratio of inflow to outflow velocity
|vin|/|vout|; (d) downstream rest-frame density in units of
the initial density in the upstream n̄down/n0; (e) width of
the reconnection region at a distance of 430 c/ωpe from
the center of the layer. Blue, green, and red points
denote simulations with upstream temperature ratios
Te/Ti = 0.1, 0.3, and 1, respectively.

As described in Section 3.3.2, the quantities we extract
are time-averaged, typically over 0.3 Alfvénic crossing
times, corresponding to ∼ 4500ω−1

pe . The points in Fig. 9
represent the time averages, with vertical error bars in-
dicating one standard deviation. At low βi, the inflow
velocity is |vin|/vA ≈ 0.08, independent of the upstream
temperature ratio (panel (a)). In the high-βi case, the
inflow speed is smaller, |vin|/vA ≈ 0.04, and shows a
weak dependence on the temperature ratio, with higher
temperature ratios attaining lower values of |vin|/vA.

The outflow velocity (panel (b)) nearly saturates the
Alfvén limit at low βi (the Alfvén limit is indicated with
the horizontal dashed black line), whereas for high βi it

is sub-Alfvénic, |vout|/vA ≈ 0.75. For low values of βi,
i.e., βi . 0.1, the outflow velocity is nearly independent
of the temperature ratio, whereas at high βi it shows
a weak dependence on Te/Ti, with higher temperature
ratios corresponding to greater outflow speeds.

The dependence of the reconnection rate |vin|/|vout|
on βi and Te/Ti (panel (c)) follows from the variations in
inflow speed and outflow velocity that we have just dis-
cussed. At low βi, the reconnection rate is |vin|/|vout| ≈
0.08 regardless of the temperature ratio, whereas at high
βi, and specifically for βi = 2, the reconnection rate at
Te/Ti = 1 is |vin|/|vout| ≈ 0.04, only half that of the
Te/Ti = 0.1 case. So, in the high-βi regime reconnection
proceeds slower for hotter upstream electrons.

As βi increases, the plasma is less prone to be com-
pressed during the reconnection process. As shown in
Fig. 9 (d), the downstream to upstream density ratio de-
creases as βi increases. The value of ndown/n0 is nearly
independent of the upstream temperature ratio. Though
the ratio ndown/n0 approaches unity at high βi, this does
not necessarily imply that the fractional contribution of
adiabatic heating to total heating is negligible at high βi

(we demonstrate this in Section 4.3).
Lastly, in panel (e) we show the βi-dependence of the

reconnection layer width δrec, in units of the electron
skin depth c/ωpe. We measure the width across the re-
connection layer, as identified by Eq. 7, at a distance
∼ 430 c/ωpe downstream of the central X-point. The
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Figure 8. Time evolution of total (MTe,tot; black solid), ir-
reversible (MTe,irr; red dashed), and adiabatic (MTe,ad; blue
dashed) heating efficiency, for a low-βi simulation (top panel, with
βi = 0.0078) and a high-βi case (bottom panel, with βi = 2). In
both cases, σw = 0.1, Te/Ti = 0.1 and mi/me = 25. The heat-

ing efficiencies are measured starting at t ≈ 5000ω−1
pe , at which

point the two reconnection wavefronts recede past the location of
the downstream region used for our computations (shown in Fig. 3
with the green contours). For the low-βi case, the total heating
efficiency oscillates around MTe ≈ 0.04, and it is dominated by
genuine/irreversible heating (panel (a)). For high βi, the total
heating efficiency saturates at a smaller value, MTe ≈ 0.016. Here,
adiabatic and irreversible heating equally contribute (panel (b)).

width shows strong variability in time at low βi, as sec-
ondary islands pass through the region employed for our
measurements (note the large error bars). Despite the
uncertainty in the measurement, panel (e) shows a con-
sistent trend of increasing reconnection layer width δrec

with βi. The measured values of δrec lie in the range 25 –
50 c/ωpe, which is apparently close to the chosen current
sheet thickness at initialization, ∆ = 40 c/ωpe. However,
we demonstrate in Appendix F that the measured recon-
nection layer width is independent of our choice of the
initial sheet thickness. It follows that our measurement
leads to a reliable assessment of the opening angle of the
reconnection outflow, ∼ δrec/(430 c/ωpe) ∼ 0.1.

4.3. Dependence of particle heating on βi and Te/Ti

In Fig. 10, we show the βi and Te/Ti dependence
of electron (panel (a)) and proton (panel (b)) dimen-
sionless temperature, and the ratio of proton-to-electron
skin depth (panel (c); see Eq. 5). In each panel, solid
and dashed lines indicate downstream and upstream
quantities, respectively. As in Fig. 9, blue, green, and
red points refer to electron-to-proton temperature ratios
Te/Ti = 0.1, 0.3, and 1, respectively. The upstream elec-
tron dimensionless temperatures lie in the range 10−3 to
10, as in Table 1; for protons, the dimensionless temper-
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Figure 9. For temperature ratios Te/Ti = 0.1 (blue), 0.3 (green),
and 1 (red), βi-dependence of (a): inflow velocity |vin|/vA; (b):
outflow velocity |vout|/vA; (c): reconnection rate |vin|/|vout|; (d):
downstream density in units of initial density in the upstream
ndown/n0; (e): width of reconnection layer δrec. Error bars repre-
sent one standard deviation from the mean. The inflow velocity is
averaged over a region of length Lx/3 ≈ 1440 c/ωpe in x and width
20 c/ωpe in y, located |y| ∼ 100 c/ωpe upstream of the central X-
point. We have checked that the saturation value is insensitive to
the choice of averaging region. The outflow velocity is computed as
an average over the 20 cells with the largest |v ·x̂| located along the
central region of the outflow (|y| . 4 c/ωpe). We have tested that
the resulting outflow velocity is nearly insensitive to our averaging
procedure. The regions used for measuring density in the upstream
and downstream are described in Section 3.2. The width of the
reconnection layer is measured at a distance ∼ 430 c/ωpe down-
stream of the central X-point. All quantities are time-averaged

over ∼ 0.3 tA ≈ 4500ω−1
pe . Both inflow and outflow velocities tend

to decrease with βi, with weak dependence on Te/Ti (noticeable
only at high βi). The density compression decreases with βi. The
width δrec of the layer increases with βi, yet with large error bars.
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dimensionless temperature, θe; (b): proton dimensionless tempera-
ture, θi; (c): proton-to-electron skin depth ratio, (c/ωpi)/(c/ωpe).
The simulations shown here use a mass ratio mi/me = 25 and
magnetization σw = 0.1.

ature in the upstream ranges from 4× 10−4 to 0.4.
The range of temperatures in the downstream is

smaller than in the upstream (compare the solid and
dashed lines in Fig. 10(a) and (b)). At low βi, the avail-
able magnetic energy is large compared to the particle
thermal content in the upstream, so dissipation of the
magnetic field leads to electron and proton temperatures
in the downstream that are nearly independent of βi.
At high βi, the energy transferred from the fields to the
particles is much smaller than the initial particle thermal
content, giving a minor increase of temperature from up-
stream to downstream. Even if the fractional increase in
temperature is extremely small at high βi, the fraction of
available magnetic energy being converted into particle
heating might still be as large as at low βi. The rest of
the section addresses this question.

We show the plasma-βi and temperature ratio Te/Ti

dependence of electron and proton heating in Fig. 11.
The simulations presented here are those referenced in

Tab. 1, for which mi/me = 25 and σw = 0.1. We indicate
the total, adiabatic, and irreversible heating by MT e,tot

(Eq. 16), MT e,ad and MT e,irr (Eqs. 23) for electrons,
and by MT i,tot (Eq. 18), MT i,ad and MT i,irr (Eqs. 25)
for protons. Blue, green, and red points indicate sim-
ulations with upstream electron-to-proton temperature
ratios of 0.1, 0.3, and 1, respectively. As in Section 4.2,
filled points are the time-averaged results of our simula-
tions, and vertical error bars indicate one standard devi-
ation from the mean. The top, middle, and bottom rows
show heating fractions of electrons, protons, and of the
overall fluid, respectively, which we now discuss in turn.

In Fig. 11(a), we show the dependence of the total elec-
tron heating efficiency MT e,tot on βi and Te/Ti. Although
the initial plasma βi spans more than two orders of mag-
nitude, and the initial temperature ratio an order of mag-
nitude, even the most extreme values of MT e,tot differ by
no more than a factor of ∼ 4. The value of MT e,tot in
our βi . 0.5 simulations, for which electrons stay non-
relativistic both in the upstream and in the downstream,
is ∼ 0.04, which is consistent with the results of non-
relativistic reconnection by Shay et al. (2014) for mass
ratio mi/me = 25.2 As shown by Shay et al. (2014), the
electron heating efficiency in non-relativistic reconnec-
tion is expected to decrease with increasing mass ratio;
in Sections 4.4 and 4.6, we present the dependence of the
electron and proton heating fractions in trans-relativistic
reconnection on mi/me, up to the physical value.

The total electron heating fraction MT e,tot is decom-
posed into adiabatic and irreversible components in pan-
els (b) and (c). By comparing the two panels, we see that
most of the heating in the low-βi regime comes from ir-
reversible processes, i.e., it is accompanied by a genuine
increase in entropy, while heating at high βi mostly re-
sults from adiabatic compression.

The electron adiabatic heating efficiency increases with
the inflow temperature ratio Te/Ti (Fig. 11(b)). The de-
pendence is most apparent at high βi, where adiabatic
heating represents a significant contribution to the total
heating. The dependence of adiabatic heating on tem-
perature ratio can be simply understood through the adi-
abatic law T/nγ̂−1 = const. As electrons get compressed
from upstream to downstream, the adiabatic heating
fraction can be written as3

MT e,ad =
1

2
βi
Te

Ti

[(
ndown

n0

)γ̂e−1

− 1

]
. (27)

As shown in Fig. 9(d), the ratio of downstream to ini-
tial upstream density ndown/n0 is nearly independent of
the upstream temperature ratio, so that MT e,ad ∝ Te/Ti

at fixed βi. Eq. 27 also provides insight into the βi-
dependence of adiabatic heating. It shows that, for a

2 In Shay et al. (2014), the magnetization was σw ≈ 0.004 −
0.1. However, as long as σw � 1 and all the species stay at non-
relativistic temperatures, we expect the reconnection physics to be
independent of the flow magnetization.

3 Eq. 27 assumes that the adiabatic index is constant as electrons
pass from upstream to downstream, which is a good approximation
when electrons are ultra-relativistic in both regions (so, for high βi
and large Te/Ti); still, in all the simulations used in Fig. 11, we
find that the electron adiabatic index changes by no more than
γ̂e,up − γ̂e,down ≈ 0.1. In any case, Eq. 27 is presented only for
illustrative purposes, and we properly account for the effect of a
variable adiabatic index in our calculation of the heating fractions.
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Figure 11. For upstream temperature ratios Te/Ti = 0.1 (blue), 0.3 (green), and 1 (red), βi-dependence of heating efficiencies; (a): electron
total, MTe,tot; (b): electron adiabatic, MTe,ad; (c): electron irreversible, MTe,irr; (d): proton total, MT i,tot; (e): proton adiabatic, MT i,ad;
(f): proton irreversible, MT i,irr; (g): electron and proton total, MTe,tot +MT i,tot; (h): electron and proton adiabatic, MTe,ad +MT i,ad; (i):
electron and proton irreversible, MTe,irr +MT i,irr. The simulations shown here use a mass ratio mi/me = 25 and magnetization σw = 0.1.
Error bars, mostly smaller than the plotted symbols, represent one standard deviation from the mean. The decomposition of total heating
into irreversible and adiabatic components shows that electron and proton heating at low βi is accompanied by an increase in entropy,
while heating in the high-βi regime tends to be dominated by adiabatic compression.

given temperature ratio, the adiabatic heating efficiency
would scale linearly with βi, if the compression ratio
ndown/n0 were to be fixed. As shown in Fig. 9(d), the
downstream to upstream density ratio decreases with βi,
approaching unity at high βi. However, the decrease of
ndown/n0 with βi is quite shallow, and insufficient to
counteract the linear dependence on βi in Eq. 27. It
follows that at low βi the effect of adiabatic heating is
negligible, while at high βi the role of adiabatic heating
can be more important than that of irreversible heating.

This statement can be further justified by considering
electron energization in the diffusion region as the main
source of irreversible electron heating, following Le et al.
(2016). In the diffusion region, the electron energy will
increase by eErec`e, where Erec ∼ 0.1(vA/c)B0 is the re-
connection electric field (assuming a reconnection inflow
rate of ∼ 0.1 vA/c, see Fig. 9(a)) and `e is the distance
traveled by electrons along the electric field (along z, in
our geometry). For the sake of simplicity, let us now as-
sume that βi is sufficiently small that w ∼ n0mic

2 and
so σw ∼ σi (this is the case for βi . 0.1, at our reference
magnetization σw = 0.1). The corresponding irreversible
heating efficiency can be written in the case σw ∼ σi . 1
as

MT e,irr ∼ 0.1
`e

c/ωpi
(28)

which does not depend explicitly on βi. It follows that, as
long as `e is a weak function of βi, the adiabatic heating
efficiency in Equation 27, which scales linearly with βi,
will be unimportant at low βi, whereas it will dominate
over irreversible heating at high βi.

We remark that Equation 28 does not capture a num-
ber of important effects. First, by tracking individual
particle orbits, we have found that the in-plane com-
ponents of the electric field, that we have neglected
above, can provide a significant contribution to the total
electron energization (a comprehensive discussion of the
physics of electron heating will be presented elsewhere).
Second, we have neglected the βi-dependence of the re-
connection rate. Third, we have assumed w ∼ n0mic

2,
which is incorrect at high βi. Fourth, we do not have a
direct measure of `e, which would assess its dependence
on the flow conditions. For these reasons, it is likely that
the electron irreversible heating will be dependent on βi.

In fact, the irreversible electron heating efficiency
(shown in Fig. 11(c)) systematically decreases with βi,
and the trend is largely independent of the initial tem-
perature ratio, apart from the case with βi = 2 (right-
most points in Fig. 11(c)). Here, the irreversible heating
fraction reaches MT e,irr ≈ 0.03 for Te/Ti = 1, a factor
of ∼ 3 larger than for the βi = 2 cases with lower tem-
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perature ratios, Te/Ti = 0.1 and 0.3.4 We attribute the
peculiar behavior of this case to the fact that, among
the mi/me = 25 simulations presented in Fig. 11, the
βi = 2, Te/Ti = 1 case is the only one for which the
scale separation (c/ωpi)/(c/ωpe) between protons and
electrons approaches unity (see Fig. 10(c)). For the case
βi = 2, Te/Ti = 1 in Fig. 11, this statement holds true
for both the upstream and the downstream scale separa-
tion, since the reconnection process at high βi does not
appreciably change the plasma thermal content. How-
ever, as we further discuss in the next two subsections,
where we investigate the dependence of our results on
the mass ratio and the magnetization, we find that the
necessary and sufficient condition for the electron and
proton heating efficiencies to be comparable is that the
downstream scale separation approaches unity. In retro-
spect, this is not surprising, since if (c/ωpi)/(c/ωpe)→ 1
in the downstream, the fluid effectively behaves like an
electron-positron plasma.

In Fig. 11 (second row of panels), we also explore the
βi-dependence of (d) total, (e) adiabatic, and (f) irre-
versible proton heating. As before, blue, green, and red
points correspond to simulations with upstream Te/Ti of
0.1, 0.3, and 1, respectively (we change the temperature
ratio by varying the electron temperature, while the pro-
ton temperature at a given βi is kept fixed). While the
initial dimensionless electron temperature in our simu-
lations ranges from non-relativistic to ultra-relativistic
values, protons always stay at non-relativistic or trans-
relativistic energies, θi ≈ 0.0004 – 0.5 (this is true in
both upstream and downstream). At low βi, protons are
heated more efficiently than electrons, typically by a fac-
tor of 2 – 3 at mass ratio mi/me = 25 (compare panels
(a) and (d), MT e,tot ≈ 0.05 while MT i,tot ≈ 0.13). At
larger values of mi/me, the ratio of proton to electron
heating is even larger, as we discuss in Sections 4.4 and
4.6. Once again, the notable exception is the high-βi case
with βi = 2 and Te/Ti = 1, where the electron and pro-
ton heating fractions are comparable, MT e,tot ≈ 0.06 and
MT i,tot ≈ 0.08. Similar to electrons, the irreversible com-
ponent of proton heating decreases with βi, and shows
only weak dependence on the upstream temperature ra-
tio Te/Ti (panel (f)). As shown in panel (e), the frac-
tional contribution of adiabatic heating to the total pro-
ton heating increases with βi, as for electrons.

Finally, we show the total particle (i.e., sum of elec-
tron and proton) heating, as well as the corresponding
adiabatic and irreversible components, in Fig. 11(g)-(i).
Given that protons are heated more efficiently than elec-
trons, the trends in the bottom row of Fig. 11 are pri-
marily controlled by protons (again, with the exception
of the case βi = 2, Te/Ti = 1). Panel (g) shows that the
total particle heating efficiency is ∼ 0.15 across all simu-
lations, with a weakly declining trend with increasing βi.
Panels (h) and (i) show that, as discussed for electrons
and protons individually, heating in the low-βi regime is
associated with an increase in entropy, while at high βi

it is dominated by adiabatic compression.
While we cast the heating fractions in Fig. 11 in terms

4 We have extensively checked this result, finding that it holds
regardless of the simulation boundary conditions (periodic or out-
flow in the x direction, or double periodic; see Appendix B) and
the number of computational particles per cell.

of temperature differences between upstream and down-
stream, they may be expressed, alternatively, via differ-
ences in internal energy per particle; see Appendix G.

4.4. Dependence of particle heating on mi/me

We have extended our results up to the physical mass
ratio mi/me = 1836, and in this section we focus on the
case with Te/Ti = 1 (runs with σw = 0.1 and unequal
temperature ratios are presented in Section 4.6). The
separation between the electron scale c/ωpe and the pro-
ton scale c/ωpi is regulated by Eq. 5. For non-relativistic
particles, the ratio of proton to electron skin depth is√
mi/me ∼ 40, so that a large simulation domain is re-

quired to properly capture the proton physics. However,
in the trans-relativistic regime of our simulations, the
particles can approach (or exceed, in the case of elec-
trons) relativistic temperatures. Here, the effective in-
crease in electron inertia can bring the ratio of proton to
electron skin depth close to unity (see Eq. 5). This con-
dition holds, for example, in simulations C[3], C[4], and
B[4], when the mass ratio is increased to mi/me = 1836
at fixed σw and βi.

We show in Fig. 12 the dependence of total (a), adia-
batic (b), and irreversible (c) electron heating on βi, for
mass ratios mi/me = 10, 25, and 1836. We fix the magne-
tization σw = 0.1, and the temperature ratio Te/Ti = 1;
the legend is shown in the upper part of panel (b). The
points are colored according to the dimensionless temper-
ature of upstream electrons (the corresponding colorbar
is to the right of panel (c)), ranging from non-relativistic
(θe ∼ 10−4) to ultra-relativistic (θe ∼ 103) values. In
agreement with earlier studies of non-relativistic recon-
nection by Dahlin et al. (2014) and Le et al. (2016), we
find that the total electron heating efficiency at low βi is
a decreasing function of mass ratio. For the realistic mass
ratio, at low βi the total heating fraction MT e,tot ≈ 0.016
is in good agreement with the observed value in the mag-
netopause, MT e,tot = 0.017 (Phan et al. 2013). At βi = 2,
the electron heating efficiency is remarkably insensitive
to the mass ratio, with MT e,tot ≈ 0.06. As we have
anticipated above, in this case the upstream and down-
stream skin depths of protons and electrons are compa-
rable (once we account for the effects of relativistic iner-
tia), so the physics should resemble that of an electron-
positron plasma, regardless of the mass ratio. The adi-
abatic heating efficiency (panel (b)) shows only a weak
dependence on mass ratio, in agreement with Eq. 27. For
realistic mass ratios, electron heating is governed by irre-
versible processes at low βi, adiabatic heating dominates
at intermediate βi ∼ 0.1 − 1, while the two components
equally contribute at high βi ∼ 2.

We show the βi-dependence of the proton heating frac-
tions MT i,tot,MT i,ad, and MT i,irr in panels (d), (e), and
(f). The points are colored according to the upstream
dimensionless proton temperature, θi (the scale is to the
right of panel (f)). The upstream proton temperatures
are non-relativistic or trans-relativistic, with θi . 0.5. At
fixed σw and βi, the initial proton temperature stays the
same, when we vary the mass ratio (as opposed to the
electron temperature, which increases with mass ratio).
So, the proton heating efficiencies are expected to remain
unchanged, as long as the box size Lx is sufficiently large
(in units of the proton skin depth c/ωpi) to capture the
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Figure 12. Mass ratio mi/me dependence of heating efficiencies; (a): electron total, MTe,tot; (b): electron adiabatic, MTe,ad; (c): electron
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Figure 13. (a): βi-dependence of electron total heating MTe,tot (solid blue), electron irreversible heating MTe,irr (dashed blue), proton
total heating MT i,tot (solid red), and proton irreversible heating MT i,irr (dashed red); (b): βi-dependence of electron-to-overall total heating
ratio qTe,tot (solid blue) and electron-to-overall irreversible heating ratio qTe,irr (dashed blue), as defined in Eqs. 29, 30. Here, σw = 0.1,
Te/Ti = 1, and mi/me = 1836.

physics of proton heating. In the bottom row of Fig. 12,
the proton heating fractions MT i,tot,MT i,ad, and MT i,irr

are nearly independent of the mass ratio, which demon-
strates that even for the realistic mass ratio, the box
used here is sufficiently large to capture the physics of
proton heating (and even more so, of electron heating).
The results discussed in Section 4.3 for mi/me = 25 and
Te/Ti = 1 are therefore still valid here: proton heating
is dominated by irreversible processes at low βi, whereas
irreversible and adiabatic components equally contribute
at high βi; the irreversible heating efficiency of protons
is a decreasing function of βi; protons are heated more
efficiently than electrons (although the total proton-to-
electron heating ratio for mi/me = 1836 is ∼ 7 at low
βi, larger than the value measured for mi/me = 25, since
the electron heating efficiency decreases with mass ra-
tio); the heating fractions of the two species approach
comparable values at βi = 2, with MT i,tot ≈ 0.08 and
MT e,tot ≈ 0.06.

In Fig. 13(a), we directly compare the βi-dependence

of electron and proton heating fractions MT e,tot (solid
blue), MT e,irr (dashed blue), MT i,tot (solid red), and
MT i,irr (dashed red) for mi/me = 1836, σw = 0.1, and
Te/Ti = 1.5 As anticipated above, the proton and elec-
tron total and irreversible heating fractions differ roughly
by a factor of ∼ 7 at low βi, but they approach a sim-
ilar value at βi = 2 (≈ 0.03 for the irreversible compo-
nent and ≈ 0.06 for the total). In Fig. 13(b), we show
the βi-dependence of the ratio of electron-to-overall total
heating ratio (solid blue),

qT e,tot =
MT e,tot

MT e,tot +MT i,tot
, (29)

and similarly, the ratio of electron-to-overall irreversible

5 The error bars in Fig. 13(a) are larger for protons than electrons
(for electrons, they are smaller than the size of the plot symbols),
but the fractional error is the same. Additionally, the error bars are
larger at low βi. As described in 4.2, this results from the frequent
formation of secondary islands at low βi.
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heating ratio (dashed blue),

qT e,irr =
MT e,irr

MT e,irr +MT i,irr
. (30)

At low βi, the electron-to-overall total heating ratio is
qT e,tot ≈ 0.14, and it increases with βi up to qT e,tot ≈
0.45 at βi = 2. The corresponding ratio of the irreversible
components qT e,irr is comparable to qT e,tot at both low βi

(where adiabatic heating is negligible) and βi = 2 (where
adiabatic and irreversible contributions are similar), but
for intermediate βi we find that qT e,irr can be as low as
0.07, smaller than qT e,tot by up to a factor of ≈ 3.

4.5. Dependence of particle heating on magnetization

In the previous sections, we have focused on the case
σw = 0.1; in Fig. 14, we show the βi-dependence of
the heating efficiencies for a suite of simulations with
σw = 0.1, 0.3, 1, 3, and 10.6 We fix the temperature ra-
tio Te/Ti = 1 and the mass ratio mi/me = 1836. The
panels are similar to those in Fig. 12: (a), (b), and (c)
show the electron heating fractions MT e,tot,MT e,ad, and
MT e,irr; (d), (e), and (f) show the proton heating frac-
tions MT i,tot,MT i,ad, and MT i,irr. The legend is in panel
(b): green, purple, brown, magenta, and black curves
connect the points having σw = 0.1, 0.3, 1, 3, and 10, re-
spectively, to guide the eye. The points of panels (a)–(c)
are colored according to the upstream dimensionless elec-
tron temperature θe, as indicated by the color bar to the
right of panel (c). Similarly, in panels (d)–(f) the points
are colored according to the upstream dimensionless pro-
ton temperature θi, as indicated by the color bar to the
right of panel (f). For fixed βi, Te/Ti, and mi/me, an
increase in magnetization leads to an increase in the up-
stream dimensionless temperature of both electrons and
protons, which can be seen by comparing the colors of
data points in panel (a) or (d) at fixed βi.

We note that the data points in Fig. 14 extend up to
a maximum value of βi that depends on σw. For our
choice of defining the magnetization using the enthalpy
density, rather than the rest-mass energy density, the ion
βi cannot exceed βi,max ∼ 1/4σw. For each value of σw,
the points with the highest value of βi are also those
for which the proton-to-electron scale separation ratio
(c/ωpi)/(c/ωpe) is the smallest (see Fig. 15). We find
that in the limit βi → βi,max, the total electron heating
efficiency shows a characteristic upturn (panel (a)), with
a typical value MT e,tot ≈ 0.05 that is nearly independent
of σw. In the low-βi regime, the electron total heating ef-
ficiency approaches a σw-dependent plateau, with higher
σw yielding larger electron efficiencies (panel (a)). The
opposite holds for protons: higher magnetizations give
smaller proton heating efficiencies (panel (d)). Indeed,
for σw = 10 the electron and proton efficiencies are com-
parable in the whole range of βi we have explored, in
agreement with the results by Sironi et al. (2015).

As anticipated in Section 4.3, we find that the neces-
sary and sufficient condition for having comparable elec-

6 At high σw, the rate of secondary island production is enhanced
(Sironi et al. 2016). In the simulations with σw = 1, 3, 10, we em-
ploy outflow boundary conditions in order to evolve the system to
longer times. This allows us to average the downstream quantities
in the reconnection exhausts over a longer timespan, and obtain
more reliable estimates.

tron and proton heating efficiencies is that the separa-
tion between the electron and proton scales in the down-
stream be of order unity (or equivalently, that the two
species be relativistically hot, with comparable tempera-
tures). As shown in Fig. 15, this can be achieved in two
ways: (i) at high σw, regardless of βi, the reconnection
process transfers so much magnetic energy to the parti-
cles that both species become relativistically hot, with
comparable temperatures; (ii) at low σw and in the limit
βi → βi,max, both electrons and protons already start
relativistically hot in the upstream region (and more so,
will be relativistically hot in the downstream).

Most of the σw-dependences that we have now pre-
sented for the total heating efficiencies MT e,tot and
MT i,tot also apply to the irreversible components MT e,irr

and MT i,irr, since the adiabatic contribution is indepen-
dent of the magnetization, at fixed βi (see Eq. 27). How-
ever, since the magnetization affects the efficiency of ir-
reversible heating at fixed βi, while the adiabatic com-
ponent remains the same, this can lead to a significant
change in the relative contributions of irreversible and
adiabatic heating. This can be seen, for example, at
βi ≈ 0.5. For σw = 0.1, MT e,irr/MT e,tot ≈ 0.1, whereas
at σw = 0.3, we find MT e,irr/MT e,tot ≈ 0.5.

To connect with the recent work of Werner et al.
(2016), we show in Fig. 16 the dependence of electron
and proton heating on the magnetization σi, defined with
the rest-mass energy density (see Eq. 2). We fix tem-
perature ratio Te/Ti = 1, mass ratio mi/me = 1836, and
βi ≈ 0.03 (which is close to the upstream plasma βi em-
ployed in Werner et al. (2016), βi = 0.01). In panel (a),
we show the σi-dependence of the electron total (solid
blue), electron irreversible (dashed blue), proton total
(solid red), and proton irreversible (dashed red) heat-
ing fractions, phrased in terms of internal energy as in
Werner et al. (2016), Mue,tot, Mue,irr, Mui,tot, and Mui,irr

(see Eqs. 15, 17). As σi increases, the downstream scale
separation between protons and electrons gets reduced
(see Fig. 15), and the two species approach comparable
heating efficiencies (whereas the two differ by a factor of
∼ 3 at low magnetization). This holds for both the total
efficiencies Mue,tot and Mui,tot and the irreversible com-
ponents Mue,irr and Mui,irr, since the amount of adiabatic
heating at fixed βi does not depend on σw.

This is further illustrated in Fig. 16(b), where we show
the σi-dependence of the electron-to-overall total heating
fraction, phrased in terms of internal energy (solid blue),

que,tot =
Mue,tot

Mue,tot +Mui,tot
, (31)

and the electron-to-overall irreversible heating ratio
(dashed blue),

que,irr =
Mue,irr

Mue,irr +Mui,irr
. (32)

Blue circles show the results of our simulations, and the
black dotted line indicates the empirical formula sug-
gested by Werner et al. (2016),

que,emp =
1

4

(
1 +

√
σi/5

2 + σi/5

)
(33)
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Figure 14. Dependence of the heating efficiencies on the magnetization σw (normalized to the enthalpy density), with a layout similar to
that of Fig. 12; (a): electron total, MTe,tot; (b): electron adiabatic, MTe,ad; (c): electron irreversible, MTe,irr; (d): proton total, MT i,tot;
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For these simulations, the upstream electron-to-proton tempera-
ture ratio is Te/Ti = 1, and mi/me = 1836.

We find reasonable agreement between this empirical for-
mula and our simulations, for βi ≈ 0.03. For low values
of the magnetization, que,tot ≈ que,irr ≈ 0.25, but as σi

increases toward the ultra-relativistic limit, que,tot and
que,irr approach ≈ 0.5, i.e., electrons and protons are
heated with comparable efficiencies. However, Fig. 14
shows that, at fixed magnetization, the heating efficien-
cies depend on βi, a trend which cannot be properly cap-
tured by the empirical formula of Werner et al. (2016).

We then propose the following formula, which captures
the dependence of the electron-to-overall heating ratio
que,tot on both magnetization σw and proton βi:

que,fit =
1

2
exp

[
−(1− βi/βi,max)3.3

1 + 1.2σ0.7
w

]
, (34)

where βi ≤ βi,max = 1/4σw. The formula in Eq. 34 has
two desirable, and physically motivated, features. First,
for βi → βi,max, the electron-to-overall heating ratio ap-
proaches 0.5, independently of the magnetization. Sec-
ond, for σw � 1, que,tot = 0.5, regardless of βi. In both
these limits, the scale separation between electrons and

protons in the downstream will be of order unity (as we
have discussed above), which we have demonstrated is a
necessary and sufficient condition for comparable heating
efficiencies between electrons and protons.

In Fig. 17, we compare Eq. 34 to the results of sim-
ulations with mi/me = 1836 and Te/Ti = 1 (this is the
same set of simulations presented earlier in this section,
as well as in Section 4.4). In Fig. 17(a), we show the βi-
dependence of the electron-to-overall heating ratio que,tot

for a range of σw (see the legend). The simulation re-
sults are shown by solid filled circles, while solid lines
are based on Eq. 34. The curves are plotted up to to the
maximum allowed value of βi, namely βi,max = 1/4σw.
The black dotted line at que,tot = 0.5 shows the limit of
comparable heating efficiencies for electrons and protons,
which will be reached as βi → βi,max, independently of
σw. We find that both the simulation data and the fit-
ting formula in Eq. 34 asymptote to a constant value
for βi � βi,max, with smaller heating ratios at lower σw.
In the non-relativistic limit σw � 1, our formula pre-
scribes that que,fit → 0.18, not very different from the
value que,fit ≈ 0.22 obtained for σw = 0.1. This is con-
sistent with the expectation that in the non-relativistic
regime σw � 1, the heating efficiencies will be indepen-
dent from the magnetization.

In Fig. 17(b), we show the dependence of the electron-
to-overall heating ratio on the magnetization σw, for a
range of βi. The simulations results are shown by filled
solid circles, which are colored according to the value of
βi in the upstream (the color scale is located to the right
of Fig. 17(b)). We select a few representative values of βi

and plot the corresponding predictions based on Eq. 34
with the solid curves (see the legend in the plot). The
curves are plotted up to σw,max, which for a fixed βi is
given by σw,max ∼ 1/4βi. In summary, Figs. 17(a) and
(b) show that our proposed formula (Eq. 34) properly
captures the magnetization and plasma βi dependence of
the electron-to-overall heating ratio over the whole range
of σw and βi explored in this work.
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Figure 17. Comparison of the electron-to-overall heating ratio
que,tot between our simulations with mi/me = 1836 and Te/Ti =
1 (filled circles with error bars) and the best fitting formula in
Eq. 34 (solid curves). We show the dependence on (a) plasma-
βi and (b) magnetization σw. In panel (a), the different colors
represent magnetizations σw = 0.1 (green), 0.3 (purple), 1 (brown),
3 (magenta), and 10 (black). In panel (b), the color coding of the
curves is indicated in the legend (from cyan to red for increasing
βi), while the color of the filled points refers to the colorbar on the
right. In both panels, the black dotted line at que,tot = 0.5 shows
the limit of comparable heating efficiencies between electrons and
protons, expected when βi → βi,max (regardless of σw) or σw � 1
(independently of βi).

4.6. Dependence of particle heating on Te/Ti for
mi/me = 1836

In Fig. 18, we present the dependence of electron and
proton heating efficiencies on the proton beta βi and
the temperature ratio Te/Ti for the realistic mass ra-
tio mi/me = 1836 (the figure layout is the same as in

Fig. 11, where we had employed a reduced mass ratio
mi/me = 25). We fix σw = 0.1. Even at the realistic
mass ratio, the conclusions drawn in the reduced mass
ratio case mi/me = 25 (see Section 4.3) still hold: elec-
tron and proton heating at low βi is dominated by irre-
versible processes, while heating in the high-βi regime is
mostly a result of adiabatic compression; the irreversible
component of electron heating is independent of Te/Ti

at βi . 1 (Fig. 18 (c)); the proton irreversible heat-
ing shows only a weak dependence on temperature ratio
(Fig. 18 (f)); protons are heated more efficiently than
electrons (compare the top and middle rows).

For both electrons and protons, the adiabatic heating
efficiencies for mi/me = 1836 (Figs. 18(b) and (e)) are
similar to those of the reduced mass ratio case. In fact,
according to Eq. 27, the adiabatic heating efficiency is
independent of mass ratio.7 For protons, the adiabatic
heating efficiency decreases at βi & 2; this is largely an
effect of the decrease in the adiabatic index, as the pro-
tons transition from non-relativistic to relativistic tem-
peratures.

For mi/me = 1836, the irreversible heating of protons
at low βi is a factor of ∼ 5− 7 greater than that of elec-
trons; in the mi/me = 25 case, the ratio of proton-to-
electron irreversible heating was smaller, ∼ 2− 3. As in
the reduced mass ratio case, the simulation with βi = 2
and Te/Ti = 1 shows a sharp increase in irreversible elec-
tron heating as compared to the decreasing trend ob-
served at lower βi (Fig. 18 (c)), and the heating effi-
ciencies of the two species become comparable. As we
argued in Section 4.5, the electron and proton heating
efficiencies are about equal if and only if the downstream
scale separation is of order unity. Even for the highest
values of βi that we can explore (≈ 3.9 for Te/Ti = 0.1,
and ≈ 4.6 for Te/Ti = 0.3.), this condition is not realized
for smaller temperature ratios ((c/ωpi)/(c/ωpe) & 3.2 for
Te/Ti = 0.1, and (c/ωpi)/(c/ωpe) & 1.8 for Te/Ti = 0.3),
which explains why — despite the upturn in electron
heating efficiency at high βi (Fig. 18 (c)) — the ratio
of irreversible proton to electron heating for Te/Ti = 0.1
and 0.3 remains larger than unity.

7 While Eq. 27 is written for electrons, an analogous equation
holds for the adiabatic heating of protons, if we replace βiTe/Ti →
βi and γ̂e → γ̂i.
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Figure 18. For mass ratio mi/me = 1836, magnetization σw = 0.1 and upstream temperature ratios Te/Ti = 0.1 (blue), 0.3 (green), and
1 (red), we present the βi-dependence of heating efficiencies; (a): electron total, MTe,tot; (b): electron adiabatic, MTe,ad; (c): electron
irreversible, MTe,irr; (d): proton total, MT i,tot; (e): proton adiabatic, MT i,ad; (f): proton irreversible, MT i,irr; (g): electron and proton
total, MTe,tot +MT i,tot; (h): electron and proton adiabatic, MTe,ad +MT i,ad; (i): electron and proton irreversible, MTe,irr +MT i,irr.

5. SUMMARY AND DISCUSSION

In this work, we have presented the results of a se-
ries of 2D fully-kinetic PIC simulations to explore elec-
tron and proton heating by magnetic reconnection in the
trans-relativistic regime. Here, protons are typically non-
relativistic, yet electrons can be moderately relativistic or
even ultra-relativistic. We vary the flow magnetization
σw, the proton βi and the electron-to-proton tempera-
ture ratio Te/Ti, extending our results up to the physical
mass ratio mi/me = 1836.

We show that heating in the high-βi regime is primar-
ily dominated by adiabatic compression, while for low βi

the heating is genuine, in the sense that it is associated
with an increase in entropy. At our fiducial σw = 0.1,
we find that for βi . 1 the irreversible heating efficiency
is independent of Te/Ti (which we vary from 0.1 up to
1), for both electrons and protons. For Te/Ti = 1, the
fraction of inflowing magnetic energy converted to elec-
tron irreversible heating at realistic mass ratios decreases
from ∼ 1.6% down to ∼ 0.2% as βi ranges from βi ∼ 10−2

up to βi ∼ 0.5, but then it increases up to ∼ 3% as βi ap-
proaches ∼ 2. Protons are heated much more efficiently
than electrons at low and moderate βi (by a factor of
∼ 7), whereas the electron and proton heating efficien-
cies become comparable at βi ∼ 2 if Te/Ti = 1. We
find that comparable heating efficiencies between elec-
trons and protons are achieved when the scale separation
between the two species in the reconnection exhaust ap-
proaches unity, so that the electron-proton plasma effec-

tively resembles an electron-positron fluid. This occurs
at high βi for low magnetizations, or regardless of βi at
high magnetizations (i.e., in the regime σw � 1 of ultra-
relativistic reconnection). We propose a fitting formula
(Eq. 34) that captures the magnetization and plasma-βi

dependence of the electron-to-overall heating ratio over
the whole range of σw and βi explored in this work.

The low- and high-βi cases differ with respect to sec-
ondary island formation. The formation of secondary
islands is suppressed at high βi, which leads to a homo-
geneous reconnection outflow. Secondary islands occur
frequently at low βi and high magnetizations.

We also measure the inflow speed for our fiducial mag-
netization σw = 0.1, finding that it decreases from
vin/vA ≈ 0.08 down to 0.04 as βi ranges from βi ∼ 10−2

up to βi ∼ 2 (here, vA is the Alfvén speed). Similarly, the
outflow speed saturates at the Alfvén velocity for low βi,
but it decreases with increasing βi down to vout/vA ≈ 0.7
at βi ∼ 2. The inflow (outflow, respectively) speed is in-
dependent of Te/Ti at low βi, with only a minor tendency
for lower (higher, respectively) speeds at larger Te/Ti in
the high-βi regime.

This investigation provides important insights into the
physics of low-luminosity accretion flows, such as the ac-
cretion disk of Sgr A∗. Collisionless accretion flows are
often assumed to be two-temperature, and our results
indeed show that in the trans-relativistic regime rele-
vant to hot accretion flows and accretion disk coronae,
magnetic reconnection preferentially heats protons more
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than electrons. Our results — and in particular, our fit-
ting formula in Eq. 34 — can be used to provide general
relativistic MHD simulations of accretion flows with the
sub-grid physics of energy partition between electrons
and protons (Ressler et al. 2015, 2017; Sädowski et al.
2017). This ingredient is of fundamental importance in
producing emission models that can be compared with
the forthcoming observations by the Event Horizon Tele-
scope (Doeleman et al. 2008).

To conclude, we note a few lines of investigation that
have not been considered in the current work. First, we
limited our focus to the case of symmetric, anti-parallel
reconnection. The more general case of guide-field re-
connection will be a topic of future investigation. Sec-
ond, while we have provided a quantitative description
of energy partition between electrons and protons, we
have not addressed the question of the underlying heating
mechanism. A detailed study of the heating mechanism
is deferred to future work. Lastly, we have focused on
thermal heating, as opposed to nonthermal acceleration.
The dependence of nonthermal acceleration efficiency on
magnetization is the focus of Werner et al. (2016), though
the dependence on βi and Te/Ti remains unexplored.

ACKNOWLEDGEMENTS

This work is supported in part by NASA via the
TCAN award grant NNX14AB47G and by the Black
Hole Initiative at Harvard University, which is supported
by a grant from the Templeton Foundation. LS ac-
knowledges support from DoE DE-SC0016542, NASA
Fermi NNX16AR75G, NSF ACI-1657507, and NSF AST-
1716567. The simulations were performed on Habanero
at Columbia, on the BHI cluster at the Black Hole
Initiative, and on NASA High-End Computing (HEC)
resources. The authors acknowledge computational
support from NSF via XSEDE resources (grants TG-
AST80026N and TG-AST120010).



22

APPENDIX

APPENDIX A: CONVERGENCE WITH RESPECT TO DOMAIN SIZE

For most of the simulations presented in the main body of this work, we employ a domain size of Lx ≈ 4000 c/ωpe.
However, as we demonstrate in this appendix, the heating efficiencies are insensitive to the domain size. While we
have extensively checked for convergence with boxes ranging in size from Lx ≈ 500 c/ωpe up to Lx ≈ 5000 c/ωpe, we
focus here on a low-βi case and a high-βi case, and compare domains of size Lx ≈ 2000 c/ωpe and Lx ≈ 4000 c/ωpe.

We show in Fig. 19 the electron heating fractions MT e,tot, MT e,ad, MT e,irr (panels (a), (b), and (c)) and proton
heating fractions MT i,tot, MT i,ad, MT i,irr (panels (d), (e), and (f)). Green circles indicate simulations with Lx ≈
2000 c/ωpe, and blue triangles Lx ≈ 4000 c/ωpe. The comparison is performed for two cases: βi = 0.0078, Te/Ti = 0.1
and βi = 2, Te/Ti = 1. For both the low- and high-βi simulations, σw = 0.1 and mi/me = 25. For each pair
of simulations (at low and high βi), the downstream and upstream dimensionless temperatures that enter into the
heating fractions are measured at the same physical distance (in units of the electron skin depth) downstream of the
central X-point. The electron and proton heating fractions show minimal dependence on the box size.

In Fig. 20, we show — for box sizes Lx ≈ 2000 c/ωpe (green) and Lx ≈ 4000 c/ωpe (blue) — the spatial profiles
along the outflow direction (i.e., along x, and averaged along y in the cells identified by Eq. 7 as belonging to the
reconnection downstream) of: (a) dimensionless electron temperature θe for βi = 0.0078, Te/Ti = 0.1; (b) dimensionless
proton temperature θi for βi = 0.0078, Te/Ti = 0.1; (c) dimensionless electron temperature θe for βi = 2, Te/Ti = 1;
(d) dimensionless proton temperature θi for βi = 2, Te/Ti = 1. The simulations shown in Fig. 20 correspond to the
same simulations presented in Fig. 19. The dimensionless temperature profiles are shown at t ≈ 1 tA; this corresponds
to t ≈ 6900ω−1

pe for Lx ≈ 2000 c/ωpe, and to t ≈ 14000ω−1
pe for Lx ≈ 4000 c/ωpe. The horizontal axes range from

x ≈ −700 c/ωpe to +700 c/ωpe, which accounts for most of the smaller box, but only a fraction of the larger one. For
low βi, the region used for our measurements is located at x ≈ ±630 c/ωpe, whereas it is at x ≈ ±350 c/ωpe for high
βi; in each case, the chosen distance is far enough from the central X-point that the temperature profiles attain a
quasi-uniform value, and far enough from the domain boundaries to be unaffected by the primary island (Section 3).

In Figs. 20(a) and (b), which correspond to the low-βi case, the dimensionless temperature profiles show similar
spatial dependence within x ≈ ±630 c/ωpe, and for the high-βi profiles shown in (c) and (d), the temperatures agree
within x ≈ ±350 c/ωpe. For the high-βi case, the large and small boxes show some discrepancy beyond x ≈ ±400 c/ωpe,
which is an effect of the large primary island extending from the domain boundary into the outflow region.
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Figure 19. Comparison between domain sizes Lx ≈ 2000 c/ωpe (green circles) and Lx ≈ 4000 c/ωpe (blue triangles) of the following
heating fractions; (a): electron total, MTe,tot; (b): electron adiabatic, MTe,ad; (c): electron irreversible, MTe,irr; (d): proton total,
MT i,tot; (e): proton adiabatic, MT i,ad; (f): proton irreversible, MT i,irr. We present a low-βi case with βi = 0.0078, Te/Ti = 0.1, and a
high-βi case with βi = 2, Te/Ti = 1; in both cases, the mass ratio is mi/me = 25 and σw = 0.1.

APPENDIX B: OUTFLOW VERSUS PERIODIC BOUNDARY CONDITIONS

We have compared the results of our main simulations, which are periodic in x, to a second set that employs outflow
boundary conditions, similar to what is described in Sironi et al. (2016). In Fig. 21, we show the time evolution
of the electron heating fractions MT e,tot, MT e,ad, and MT e,irr in a low-βi simulation (Fig. 21(a)–(c)) and a high-βi

case (Fig. 21(d)–(f)), for both outflow (blue) and periodic (red) boundary conditions. For the periodic simulations the
domain size is Lx = 4318 c/ωpe, whereas for the outflow runs Lx ≈ 2600 c/ωpe. Up to ∼ 1 Alfvénic crossing time, which
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Figure 20. Spatial profiles along the reconnection outflow of (a): dimensionless electron temperature θe for βi = 0.0078, Te/Ti = 0.1;
(b): dimensionless proton temperature θi for βi = 0.0078, Te/Ti = 0.1; (c): dimensionless electron temperature θe for βi = 2, Te/Ti = 1;
(d): dimensionless proton temperature θi for βi = 2, Te/Ti = 1. The mass ratio is mi/me = 25 and σw = 0.1. The spatial profiles are
extracted from simulations with domain size Lx ≈ 2000 c/ωpe (green), and Lx ≈ 4000 c/ωpe (blue). These spatial profiles are from the
same simulations shown in Fig. 19, at time t ≈ 1tA.

corresponds to t ≈ 1.4× 104 ω−1
pe for the periodic simulations and t ≈ 8.5× 103 ω−1

pe for the outflow runs, we find good
agreement between the periodic and outflow simulations. At later times, the pile-up of particles and magnetic flux
in the primary magnetic island sitting at the boundary leads to the eventual suppression of reconnection in periodic
simulations, whereas the outflow runs can be evolved for multiple Alfvénic crossing times.

In Fig. 22, we compare the dependence of the electron total heating fraction MT e,tot on βi and Te/Ti for periodic and
outflow simulations with mi/me = 25 and σw = 0.1. The periodic simulations are indicated by blue, green, and red
circles, corresponding to upstream temperature ratios of Te/Ti = 0.1, 0.3, and 1, respectively. The results of outflow
simulations are shown by dark yellow (Te/Ti = 0.1), magenta (Te/Ti = 0.3), and cyan (Te/Ti = 1) triangles. The
points corresponding to periodic runs are connected by solid lines, whereas the outflow cases are linked by dashed
lines. With regard to the βi- and Te/Ti-dependence of the electron total heating fraction, MT e,tot, the outflow and
periodic cases show good agreement. The agreement for adiabatic and irreversible heating fractions is also good.

APPENDIX C: CONVERGENCE WITH RESPECT TO SPATIAL RESOLUTION

To properly capture the electron physics, adequate spatial resolution of the electron skin depth c/ωpe, or equivalently,
temporal resolution of the inverse electron plasma frequency ω−1

pe , is necessary. In most of our simulations, we use

c/ωpe = 4 cells; since we fix c = 0.45 cells/timestep, the temporal resolution in our simulations is ∆t ≈ 0.1ω−1
pe . In

this appendix, we show that even at finer spatial (also, temporal) resolution, i.e. c/ωpe = 8 cells → ∆t ≈ 0.05ω−1
pe ,

the heating fractions are essentially unchanged relative to those obtained in simulations with c/ωpe = 4 cells.
In Fig. 23, we show the heating fractions for electrons (panels (a), (b), and (c)) and protons (panels (d), (e), and

(f)). For the cases βi = 0.0078, Te/Ti = 1 and βi = 2, Te/Ti = 1, we compare a simulation with c/ωpe = 4 cells (denoted
by green circles) to one with c/ωpe = 8 cells (indicated by blue triangles). In both sets of simulations, we employ
mi/me = 1836 and magnetization σw = 0.1. To ensure that the simulations with c/ωpe = 8 cells contain the same
number of electron skin depths as those with c/ωpe = 4 cells, it is necessary to double the size of the simulation domain
in x (in units of cells). For the simulations with c/ωpe = 4 cells, we use Lx ≈ 8000 cells, and for c/ωpe = 8 cells, we
use Lx ≈ 1.6 × 104 cells; in both cases, the physical extent of the domain in x is Lx ≈ 4318 c/ωpe. For both choices
of the spatial resolution, the electron heating fractions (total, adiabatic, and irreversible) show good agreement. The
proton heating fractions show good agreement, too.
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Figure 21. Comparison between outflow (blue) and periodic (red) simulations with σw = 0.1 and mi/me = 25. We show the time
evolution of (a): electron total heating fraction, MTe,tot for βi = 0.0078, Te/Ti = 0.1; (b): electron adiabatic heating fraction, MTe,ad

for βi = 0.0078, Te/Ti = 0.1; (c): electron irreversible heating fraction, MTe,irr for βi = 0.0078, Te/Ti = 0.1; (d): electron total heating
fraction, MTe,tot for βi = 2, Te/Ti = 1 (e): electron adiabatic heating fraction, MTe,ad for βi = 2, Te/Ti = 1 (f): electron irreversible

heating fraction, MTe,irr for βi = 2, Te/Ti = 1 The heating fractions are shown in the interval t = 5 × 103 ω−1
pe – 9 × 103 ω−1

pe , which
corresponds to t ≈ 0.36 tA – 0.64 tA for the periodic simulations and t ≈ 0.6 tA – 1 tA for the outflow ones. The curves have been shifted in
time to account for slightly different onsets of reconnection in periodic vs. outflow cases, due to different initialization of the current sheet.
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Figure 22. Comparison of outflow and periodic simulations (with σw = 0.1 and mi/me = 25), in terms of the dependence of MTe,tot on
βi and Te/Ti. Circles connected by solid lines show the results of periodic simulations, and inverted triangles connected by dashed lines
indicate outflow simulations. For periodic runs, blue, green, and red correspond to runs with upstream temperature ratios Te/Ti = 0.1, 0.3,
and 1; for periodic, dark yellow, magenta, and cyan denote Te/Ti = 0.1, 0.3, and 1.

APPENDIX D: CONTROL OF NUMERICAL HEATING

In simulations with high βi and low temperature ratios, numerical effects can lead to an artificial increase in the
upstream electron temperature, at the expense of protons. The rate of numerical heating is proportional to the
temperature difference between the two species, hence the high-βi simulations with Te/Ti = 0.1 exhibit the strongest
degree of numerical heating (Melzani et al. 2013). As the temperature difference between electrons and protons in the
upstream and downstream regions is not necessarily the same, the rate of numerical heating in the two regions may
be different. If not adequately kept under control, this can affect our measured heating efficiencies.

In Fig. 24, we compare two simulations with mi/me = 25, σw = 0.1, βi = 2, and Te/Ti = 0.1, which is the case where
numerical heating is the most serious. One has Nppc = 16 (dashed lines), and the other Nppc = 64 (solid lines). In both
cases, the size of the domain is Lx = 4318 c/ωpe. In panel (a), we show the time evolution of the dimensionless electron
temperature in the upstream (magenta) and downstream (green) for Nppc = 16 (dashed) and Nppc = 64 (solid). The
vertical black dotted line indicates the time at which primary reconnection wavefronts recede past the region selected
for our measurements (see Section 3). The dimensionless electron temperature in both the upstream and downstream
increases with time, however the amount of numerical heating is significantly less with Nppc = 64 than with Nppc = 16.
For example, the former shows a shift in downstream temperature (green) from t ≈ 4 × 103 ω−1

pe to 1.5 × 104 ω−1
pe of

only ∆θe ≈ 0.02, but for Nppc = 16 the temperature shift is about six times larger. The magenta lines show the
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Figure 23. Comparison between simulations with c/ωpe = 4 cells → ∆t ≈ 0.1ω−1
pe (green circles) and c/ωpe = 8 cells → ∆t ≈ 0.05ω−1

pe

(blue triangles) of the following heating fractions; (a): electron total, MTe,tot; (b): electron adiabatic, MTe,ad; (c): electron irreversible,
MTe,irr; (d): proton total, MT i,tot; (e): proton adiabatic, MT i,ad; (f): proton irreversible, MT i,irr. We present a low-βi case with
βi = 0.0078, Te/Ti = 1, and a high-βi case with βi = 2, Te/Ti = 1; in both cases, we employ the realistic mass ratio mi/me = 1836 and
σw = 0.1.

analogous comparison for upstream temperatures. For both choices of Nppc, the initial value of dimensionless electron
temperature in the upstream is the same, but by t = 1.5× 104 ω−1

pe , they differ by ∆θe ≈ 0.15.
In panel Fig. 24(b), we show the time evolution of the total electron heating fraction MT e,tot for Nppc = 64 (solid

blue) and 16 (dashed blue). Although numerical heating can significantly shift the measured values of dimensionless
temperature in the downstream and upstream (panel (a)), we find that the heating fractions are much less sensitive
to the value of Nppc, with Nppc = 16 already giving good results. The heating fractions we measure are proportional
to the difference between the downstream and upstream temperatures (or internal energy per particle), and it appears
that the numerical heating in the downstream and upstream regions nearly cancels out in the difference. Although we
use Nppc = 64 in simulations with βi = 2, the agreement with the Nppc = 16 case demonstrates that the impact of
numerical heating is negligible for our measured heating fractions.

We have tested the effect of numerical heating in a small box (Lx ≈ 1080 c/ωpe) with up to Nppc = 256, however
the difference (as regard to heating fractions) with respect to simulations with Nppc = 64, our standard choice for all
βi = 2 simulations, is again, negligible.

APPENDIX E: ANISOTROPY IN THE DOWNSTREAM

We characterize the anisotropy in our simulations with ratios of the diagonal components of the stress-energy tensor,

rx = Txx/Ttot (E1)

ry = Tyy/Ttot (E2)

rz = Tzz/Ttot, (E3)

as seen in the fluid rest frame; here, Ttot = (Txx + Tyy + Tzz)/3. As we show below, we typically measure anisotropies
on the order of 5− 10% in the downstream, i.e., the reconnected plasma is nearly isotropic.

In Fig. 25, we show for σw = 0.1 and mi/me = 25 the time evolution of the anisotropy ratios rx (red), ry (green),
and rz (blue), for three temperature ratios Te/Ti = 0.1, 0.3, and 1, and five values of βi = 0.0078, 0.031, 0.13, 0.5, and
2 (βi and Te/Ti of the respective simulation are indicated at the top of each panel). From top to bottom, βi increases;
from left to right, Te/Ti increases. The temporal evolution starts from ωpet = 4 × 103, when the downstream region
reaches a quasi-steady state. We find that the downstream pressures along the two directions transverse to the outflow
(ŷ and ẑ) are nearly identical, and slightly smaller than the pressure along the outflow direction (x̂, in our setup),
which agrees with the findings of Shay et al. (2014).

APPENDIX F: CONVERGENCE OF THE LAYER WIDTH WHEN VARYING THE INITIAL SHEET THICKNESS

In Fig. 9(e), we showed the Te/Ti- and βi-dependence of the reconnection layer width δrec. As mentioned in Section 2,
we set the initial current sheet thickness to be ∆ = 40 c/ωpe. A natural question is whether the measured value of δrec

is affected by the sheet thickness at initialization, or by the self-consistent reconnection physics alone. To demonstrate
that the measured values of δrec do not depend on the initial current sheet thickness ∆, we show in Fig. 26 the time
evolution of δrec for ∆ = 30 (red), 40 (green), and 60 c/ωpe (blue). Here, the box size is Lx = 2159 c/ωpe, βi = 2,
Te/Ti = 1, σw = 0.1, and mi/me = 25. The reconnection width is measured at 215 c/ωpe downstream of the central
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Figure 24. Comparison of two simulations with Nppc = 16 (dashed lines) and Nppc = 64 (solid lines), having the same physical
parameters: βi = 2, Te/Ti = 0.1, σw = 0.1, and mi/me = 25. We present the time evolution of (a): dimensionless electron temperature, θe
in the upstream (magenta) and downstream (green); (b): total electron heating fraction, MTe,tot. The upstream and downstream regions
show an increase in electron temperature as time evolves, caused by numerical heating. The impact of numerical heating is significantly
reduced by employing Nppc = 64. The measured value of MTe,tot is, however, largely unaffected by numerical heating (panel (b)).

X-point. The ∆ = 40, 60 c/ωpe curves have been shifted in time to account for the delayed onset of reconnection
caused by the thicker initial current sheet. The time evolution of δrec in Fig. 26 is shown starting at t = 5000ω−1

pe ,
beyond which δrec reaches a quasi-steady value. The three simulations converge to a similar value δrec ≈ 25 c/ωpe,
independent of the current sheet thickness at initialization.

The values in this plot should not be directly compared to those in panel (e) of Fig. 9. Here, we extract δrec at a
distance of ≈ 215 c/ωpe downstream of the central X-point (in order to avoid the influence of the primary island sitting
at the boundary), whereas in the larger box used in Fig. 9, δrec was measured at 430 c/ωpe from the center. Still, the
results from the two experiments yield the same opening angle for the reconnection outflow.

APPENDIX G: HEATING EFFICIENCIES IN TERMS OF INTERNAL ENERGY PER PARTICLE

In the main body of the text, we phrased most of the heating fractions in terms of differences in temperature
between downstream and upstream, but they can also be expressed in terms of differences in internal energy per
particle. In Fig. 27, which is analogous to Fig. 11, we show the Te/Ti- and βi-dependence of: electron heating fractions
Mue,tot,Mue,ad,Mue,irr (panels (a), (b), (c)); ion heating fractions Mui,tot,Mui,ad,Mui,irr (panels (d), (e), (f)); and
total particle heating fractions Mue,tot + Mui,tot,Mue,ad + Mui,ad,Mue,irr + Mui,irr (panels (g), (h), (i)). As before,
blue, green, and red lines denote temperature ratios Te/Ti = 0.1, 0.3, and 1, and the simulations have mi/me = 25 and
σw = 0.1. Since the protons here are non-relativistic in both the upstream and downstream, the points in panels (d) of
Figs. 27 and 11 typically differ by a factor of γ̂i− 1 = 2/3 (excluding the βi = 2 cases, for which the protons are mildly
relativistic, with θi,up ≈ 0.4), where γ̂i = 5/3 is the adiabatic index for a non-relativistic gas. The relationship between
the two options for measuring the heating fractions of electrons, MT e,tot and Mue,tot in panels (a) of Figs. 27 and 11,
is not as simple because the electrons can be non-, trans- or ultra-relativistic. For example, at βi = 2, Te/Ti = 1, the
upstream and downstream dimensionless electron temperatures are θe,up ≈ θe,down ≈ 10, and the adiabatic index is
γ̂e ≈ 4/3 in both the upstream and downstream. The ratio of MT e,tot to Mue,tot is then MT e,tot/Mue,tot ≈ 1/3 = γ̂e−1
for γ̂e = 4/3. However, at low βi, electrons are less relativistic, and the ratio MT e,tot/Mue,tot is typically larger because
the adiabatic index is larger. Still, we remark that all of the conclusions presented in the paper hold when the heating
efficiencies are measured using the internal energy per particle, rather than the temperature.
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Figure 25. Time evolution of the anisotropy ratios in the reconnection downstream for a range of βi (increasing from top to bottom,
as indicated in the legends) and Te/Ti (0.1 in the left column, 0.3 in the middle column, 1 in the right column). Here, σw = 0.1 and
mi/me = 25. Red, green, and blue curves correspond to the ratios rx, ry , and rz (Eqs. E1–E3). Time evolution is shown starting at
ωpet = 4× 103, at which point the downstream region used for our heating measurements reaches a quasi-steady state.
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Figure 26. Time evolution of the reconnection layer width δrec for a simulation with box size Lx = 2159 c/ωpe, βi = 2, Te/Ti = 1, σw = 0.1,
and mi/me = 25. The value of δrec is measured at 215 c/ωpe from the center. It does not depend on the choice of the initial current sheet
thickness, ∆ = 30, 40, 60 c/ωpe, shown by the red, green, and blue curves, respectively.

0.00

0.05

0.10

0.15

0.20

M
u

e
,t

o
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
u

i,
to

t

0.00

0.05

0.10

0.15

0.20

M
u

e
,a

d

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
u

i,
a

d

0.00

0.05

0.10

0.15

0.20

M
u

e
,i
rr

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
u

i,
ir
r

10
−2

10
−1

10
0

10
1

βi

0.0

0.1

0.2

0.3

0.4

M
u

e
,t

o
t+

M
u

i,
to

t

10
−2

10
−1

10
0

10
1

βi

0.0

0.1

0.2

0.3

0.4

M
u

e
,a

d
+

M
u

i,
a

d

10
−2

10
−1

10
0

10
1

βi

0.0

0.1

0.2

0.3

0.4

M
u

e
,i
rr
+

M
u

i,
ir
r

Te ⁄ Ti=0.1
Te ⁄ Ti=0.3
Te ⁄ Ti=1

(a)

(d)

(b)

(e)

(c)

(f)

(g) (i)(h)

Figure 27. The layout here is analogous to Fig. 11, but for the internal energies, ue, ui instead of temperatures, Te, Ti. Plasma βi- and
Te/Ti-dependence of various heating efficiencies; (a): electron total, Mue,tot; (b): electron adiabatic, Mue,ad; (c): electron irreversible,
Mue,irr; (d): proton total, Mui,tot; (e): proton adiabatic, Mui,ad; (f): proton irreversible, Mui,irr; (g): electron and proton total, Mue,tot +
Mui,tot; (h): electron and proton adiabatic, Mue,ad +Mui,ad; (i): electron and proton irreversible, Mue,irr +Mui,irr. The simulations shown
here use a mass ratio mi/me = 25 and magnetization σw = 0.1. As in earlier plots, blue, green, and red points correspond to simulations
with upstream Te/Ti ratios of 0.1, 0.3, and 1.
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