
Parallel Computing 108 (2021) 102833

A
0

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Porting WarpX to GPU-accelerated platforms
A. Myers a,∗, A. Almgren a, L.D. Amorim a, J. Bell a, L. Fedeli e, L. Ge b,a, K. Gott a, D.P. Grote c,
M. Hogan b, A. Huebl a, R. Jambunathan a, R. Lehe a, C. Ng b, M. Rowan a, O. Shapoval a,
M. Thévenet d, J.-L. Vay a, H. Vincenti e, E. Yang a, N. Zaïm e, W. Zhang a, Y. Zhao a, E. Zoni a

a Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
b SLAC National Accelerator Laboratory Menlo Park, CA 94025, USA
c Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
d Deutsches Elektronen Synchrotron (DESY), Hamburg, Hamburg 22607, Germany
e LIDYL, CEA-Université Paris-Saclay, CEA Saclay, 91 191 Gif-sur-Yvette, France

A R T I C L E I N F O

Keywords:
Exascale Computing
Particle-in-cell methods
Accelerator modeling

A B S T R A C T

WarpX is a general purpose electromagnetic particle-in-cell code that was originally designed to run on many-
core CPU architectures. We describe the strategy, based on the AMReX library, followed to allow WarpX to
use the GPU-accelerated nodes on OLCF’s Summit supercomputer, a strategy we believe will extend to the
upcoming machines Frontier and Aurora. We summarize the challenges encountered, lessons learned, and give
current performance results on a series of relevant benchmark problems.
1. Introduction

WarpX [1] is a fully electromagnetic Particle-in-Cell (PIC) code that
is being developed as part of the US Department of Energy’s Exascale
Computing Project [2]. Originally designed for particle accelerator
modeling, and in particular for the study of laser- and beam-driven
wakefield accelerators, it has also been used to study several other
topics in the field of laser–plasma interaction, such as probing the onset
of Quantum Electrodynamics (QED) in extreme fields and laser-ion
acceleration.

WarpX implements the well-known electromagnetic PIC method for
solving the motion of relativistic, charged particles in the presence
electromagnetic fields. In addition, it also includes support for many
advanced features, such as: perfectly matched layers (PMLs) [3], a
pseudo-spectral (PSATD) Maxwell solver [4], and multi-physics options
such a ionization, QED pair creation [5,6], a QED vacuum polarization
solver [7], and binary collisions [8]. WarpX currently supports 2D,
3D and azimuthally decomposed geometries [9] and has the ability
to operate in a Lorentz-boosted reference frame [10]. It also includes
support for mesh refinement and dynamic load balancing through the
AMReX library [11,12].

WarpX was originally designed with many-core architectures in
mind. While the high-level operations such as time-stepping and MPI
parallelization were implemented in C++ using AMReX data structures,
the core PIC operations, such as current deposition, field gathering,
and various particle pushers and field solvers, were handled by the

∗ Corresponding author.
E-mail address: atmyers@lbl.gov (A. Myers).

PICSAR library of Fortran kernels [13]. These routines were highly
optimized for the Intel’s Knight’s Landing (KNL) architecture found on
supercomputers such as NERSC’s Cori and ALCF’s Theta platforms and
featured hand-vectorized versions of the core PIC operations. Related
works presenting early adoptions of accelerator hardware in PIC codes
are presented in Refs. [13–16].

As the ECP focus shifted towards GPU-based machines such as
Summit, Frontier, and Aurora, the question naturally arose about what
to do with the Fortran kernels in PICSAR. CUDA Fortran provided a way
forward for platforms with NVIDIA hardware such as Summit [17], but
it was not clear what support for Fortran would look like on AMD or
Intel hardware. Likewise, OpenACC provided an easy-to-use model for
offloading Fortran routines to NVIDIA GPUs, but again it was not clear
how that would work with non-NVIDIA GPUs and compiler support was
limited to a single vendor. OpenMP offered better prospects for porta-
bility; however, early implementations suffered performance problems
when compared to OpenACC on NVIDIA hardware.

Ultimately, the choice was made to port the PIC kernels in PICSAR
from Fortran to C++, and to offload kernels using either CUDA, HIP,
or DPC++, depending on whether NVIDIA, AMD, Intel hardware is tar-
geted. This removed any need for mixed language programming, which
adds substantial complication to the codebase and also defeats impor-
tant compiler optimizations such as inlining. Additionally, C++ usually
gets better and, importantly, earlier support from vendors, owing to
its prominence in industry relative to Fortran. Finally, CUDA, HIP, and
vailable online 14 September 2021
167-8191/© 2021 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.parco.2021.102833
Received 1 November 2020; Received in revised form 15 June 2021; Accepted 1 Se
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ptember 2021

http://www.elsevier.com/locate/parco
http://www.elsevier.com/locate/parco
mailto:atmyers@lbl.gov
https://doi.org/10.1016/j.parco.2021.102833
https://doi.org/10.1016/j.parco.2021.102833
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2021.102833&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Parallel Computing 108 (2021) 102833A. Myers et al.

l
o
l
l
p
i
t
i
p
s
s

2

A
r
E
s
h
o
c
t
o

2

s
t
s
c

DPC++ offer a relatively consistent programming model across all three
target platforms. Any implementation differences between the three
could be entirely hidden in a performance portability layer; in our case,
in the ParallelFor routines in AMReX (see Section 2.5). In this
manner, NIVIDA, AMD, and Intel GPUs could all be supported, with
little to no change to the WarpX code required.

Today, WarpX is a C++14 application with an optional, standard-
ized Python interface (PICMI) that can be used to drive simulations
interactively [18]. It runs on NVIDIA, AMD, and Intel GPUs, in addition
to many-core CPU architectures such as KNL and Fujitsu’s A64FX
processors. The core of the GPU support is the ParallelFor kernel
aunching method from AMReX. In what follows, we give a brief
verview of the features in AMReX that WarpX uses to enable paral-
elization and GPU support. Then, we summarize several key lessons
earned from the experience of scaling up the code on Summit. In
articular, we discuss the importance of memory management, the
mportance of optimizing for memory footprint as well as run time,
he importance of optimizing parallel communication routines, and the
mportance of properly utilizing the memory hierarchy. Finally, we will
resent weak and strong scaling results from a uniform plasma problem
etup and performance numbers obtained on a plasma acceleration
tage benchmark problem.

. Parallelization

WarpX leverages AMReX for parallelization and GPU offloading.
MReX is a framework for building block structured, adaptive mesh
efinement (AMR) applications that is being developed as part of the
xascale Computing Project. It provides distributed data containers for
toring and iterating over mesh and particle data defined on AMR
ierarchies, tools for performing parallel communication, inter-level
perations, linear solvers, and support for embedded boundaries via a
ut cell approach. In what follows we summarize the main features of
he hierarchical parallelism model from AMReX that WarpX uses to run
n multi-node CPU and GPU platforms.

.1. Domain decomposition

WarpX makes use of the AMReX-provided tools for describing block-
tructured AMR hierarchies. From the simplest to the most complex,
hese are the IntVect, which describes a point in an integer index
pace; the Box, which describes a region in the same index space and
onsists of low- and high-end IntVects plus a third IntVect that de-

scribes the staggering (i.e. is the box cell-, node- face, or edge-centered);
the BoxArray, which describes a collection of Boxes at a given level of
refinement; and the DistributionMapping, which describes how
each of those Boxes is mapped to MPI ranks. Vector<BoxArray>
and Vector<DistributionMapping> then describe the mesh hi-
erarchy across multiple levels of refinement. When used to describe a
block in an AMR hierarchy like this, we use the term ‘grid’ interchange-
ably with Box.

DistributionMappings can be user-generated, or AMReX can
generate them for a given BoxArray using a number of algorithms:
round robin, knapsack, and space filling curve. By default, the boxes
in WarpX are assigned to MPI ranks according to the space filling
curve algorithm, which attempts to put nearby boxes on the same rank.
When dynamic load balancing is employed, the user can select to use
either space filling curve, which attempts to maintain spatial locality,
or knapsack, which provides the most flexibility to achieve a balanced
work distribution.
2

2.2. Mesh and particle data structures

The basic mesh data structure in AMReX is the FArrayBox, which
is a multi-dimensional array of floating point values defined on a given
Box. FArrayBoxes can be single- or multi-component and used to
represent scalar or vector physical quantities. In the multi-component
case, the components are stored in a Struct-of-Array style. A dis-
tributed collection of FArrayBoxes defined on a given BoxArray
and DistributionMapping is called a MultiFab. The MultiFab
data structure is what stores the core mesh data fields in WarpX - the
electric and magnetic fields, the current density, and so forth.

The core particle data structure in AMReX is the Particle, which
consists of a collection of real and integer components. In WarpX, the
majority of these components are stored in Struct-of-Array style. The
exceptions are the particle positions and a 64-bit integer identification
number, which are stored together in a separate struct.

A ParticleContainer is a distributed collection of particles
associated with a given AMR hierarchy. In WarpX, each particle species
(driver beam, plasma elections, ions, etc...) is stored in a separate
ParticleContainer. Particles are assigned to AMR levels and grids
based on their physical positions. The particles in the
ParticleContainer can then be looped over grid-by-grid, and
PIC operations such as field gathering, particle pushing, and current
deposition can be performed.

2.3. Hierarchical parallelism

The above data structures naturally lend themselves to an ‘‘MPI+X’’
hierarchical approach to parallelism, where ‘‘X’’ is one of OpenMP,
CUDA, HIP, or DPC++ for on-node accelerated compute. Boxes are as-
signed to MPI tasks, and we typically use a form of over decomposition
so that each MPI tasks is responsible for processing multiple boxes. This
allows for more flexible grid structures and also aids load balancing
via swapping boxes across ranks. AMReX provides MultiFab and
ParticleContainer iterator objects that can instruct each rank
to loop over their local grids, processing each one in turn. When
processing individual grids, an accelerated compute backend such as
OpenMP or CUDA can be selected to perform the actual computations.
See the Section 2.5 for more information.

2.4. Parallel communication routines

Communicating mesh and particle data between MPI ranks is han-
dled by the AMReX framework. In particular, WarpX makes use of the
following parallel communication routines:

• FillBoundary: This method is used to fill guard cells for the
mesh data (e.g. the electric and magnetic field components, and
current/charge densities). It fills the data in the guard cells with
the (possibly more recent) data from the corresponding valid
cells. Here, ‘‘valid’’ refers to cells that are uniquely owned by the
grid in question, as opposed to ghosted copies that may exist on
other grids/MPI processes.

• SumBoundary: This operation is analogous to FillBoundary,
except that instead of copying from valid to guard, it takes the
values in the ghost cells and adds them to corresponding valid
cells. This is useful when doing current and charge deposition
operations on particles that are near the edge of grid boundaries.
These particles add some of their weights to guard cells, and
these contributions are summed to the proper valid cell by the
SumBoundary method.

• SyncNodal: This function is used when staggered or node-
centered grids are employed to represent physical quantities. For
example, when using the standard Finite-Difference Time-Domain
(FDTD) Maxwell solver, WarpX uses the Yee [19] discretization of
the field variables, which stores the magnetic field components on

Parallel Computing 108 (2021) 102833A. Myers et al.

h
G
c
t
p
b
a
p
a
p
o
b

2

P
a
K
o
o
a
e
G

d
c

s
i
a
g

cell faces, and the electric field and current density components
at cell edges. In this case, some points in the discretization are
represented on multiple grids and potentially multiple MPI ranks.
Note that, unlike in the cell-centered case, no one grid can be said
to uniquely ‘‘own’’ these points. To prevent spurious numerical
effects, it is necessary to synchronize these shared nodal points so
that they have exactly the same values to machine precision. The
SyncNodal method accomplishes this. Several different options
for deciding which value to use are implemented, e.g. simple
or weighted averaging. By default, WarpX simply chooses an
arbitrary value as the ‘winner‘ and overrides the others.

• ParallelCopy: This is the most general form of parallel communi-
cation for mesh data in AMReX. It performs copy on intersection
from one MultiFab to another, even when those MultiFabs
have different BoxArrays and DistributionMappings. This
is needed when, for example, copying data between different
levels of refinement, performing regridding or load balancing
operations, and when copying data between the PML grids and
the rest of the domain.

• Particle Redistribution: This refers to putting particles back on
the proper level and grid after they have been pushed. AMReX
includes two versions of this operation, one in which the particles
are assumed to only move between neighboring ranks, and an-
other in which they are allowed to move between any two ranks
in the MPI communicator. The former, local version is the one
used most often during normal time stepping, while the latter
version is used when performing load balancing.

These parallel communication routines have been optimized for
ybrid CPU/GPU platforms, in particular, Summit. All run fully on the
PUs, meaning that they do not trigger any unnecessary host/device
opies of mesh or particle data. Communication has been refactored
o reduce the number of GPU kernels launched, in particular when
erforming packing and unpacking operations on MPI send and receive
uffers (see Section 3.3). Finally, WarpX can take advantage of gpu-
ware MPI implementations that can operate directly on device data
ointers, if one is available. This operation can be enabled using
runtime option. When turned off, right before the MPI sends are

erformed, the data to be sent is copied into pinned memory buffers
n the host and the MPI exchanges are made between host memory
uffers instead.

.5. ParallelFor

The core of the GPU support in WarpX consists of a series of
arallelFor functions provided by the AMReX framework. These
re similar to those provided by the performance portability layers
okkos [20] and RAJA [21], but have been tailored towards the needs
f structured grid applications. These functions separate the details
f how the loop is performed from the loop body, which is supplied
s a C++ lambda function describing the operation done on each
lement. The amrex::ParallelFor loops are translated into either
PU kernel launches or normal host for depending on a compile-time

option. Using this approach, a single code base can be maintained that
can run on CPUs and on multiple GPU platforms. Note, however, that
amrex::ParallelFor does not include OpenMP parallelization —
that is included in the outer, MFIter level instead (see Listing 3).

1 amrex : : P a r a l l e l F o r (bx ,
2 [=] AMREX_GPU_DEVICE (i n t i , i n t j , i n t k)
3 {
4 ds t a r r (i , j , k , 0) = s r c a r r (i , j , k , 0) ;
5 }) ;

Listing 1: A ParallelFor routine operating on a single box of mesh
ata. In this example case, the threading will be performed over the
ells of a 3-dimensional box. AMReX arrays use Fortran index order.
3

Listings 1 and 2 show two examples of ParallelFor. The first
pecifies the loop bounds using an AMReX Box object, which results
n a 3-dimensional loop over the cells in the box. The second shows
one-dimensional ParallelFor, which loops over the particles in a

rid.

1 amrex : : P a r a l l e l F o r (np ,
2 [=] AMREX_GPU_DEVICE (i n t i)
3 {
4 amplitude [i] = 0.0 _ r t ;
5 }) ;

Listing 2: A one-dimensional ParallelFor used to thread over all
the particles in a grid.

2.6. Reductions

Parallel reductions are used in several places in WarpX; for example,
in diagnostic functions for particles and beams that act as an in situ data
reduction technique. AMReX provides functions implementing these
reduction operations including both ‘‘off-node’’ reductions over MPI
ranks and ‘‘on-node’’ reductions using either CPU threads or on-device
acceleration. On GPUs, these functions make use of vendor-supported
libraries such as CUB [22] and rocPRIM [23] when possible, and oth-
erwise fall back on AMReX’s own implementation based on warp-level
primitives such as CUDA’s __shfl_down operation and atomics.

A feature of the AMReX implementation of parallel reductions is
that it provides an API for performing multiple reductions in one
pass on any combination of data types and reduction operators. When
running on GPUs, all these operations would be done in a single
kernel launch. These reductions operations have been tested and im-
plemented for CUDA, HIP, and DPC++, as well as on CPU platforms
using OpenMP.

3. Lessons from summit

In the following section, we summarize some key lessons learned
from our experience of porting WarpX to Summit. These fall under
three main areas: issues relating to memory management and overall
footprint, issues relating to parallel communication, and finally, the
importance of cache utilization on GPU platforms.

3.1. Memory optimization

With the trend towards GPU computing, the importance of opti-
mizing codes for memory consumption has increased. Consider the
example of Summit. Summit has 4608 nodes, each of which has 608
GB of host memory (512 DDR4 + 96 HBM2), for a system total of 2.8
Petabytes. This is considerably more than Cori’s KNL nodes, which have
a total aggregate memory of 1.1 Petabytes. However, if we consider
only device memory, each Summit node has 6 NVIDIA V100 GPUs
with 16 GB of memory each, for a total of only 440 TB, substantially
less than Cori phase II. This means that, provided that one wants
to run in a mode in which your problem entirely fits on the GPUs
(which is desirable considering the performance penalties associated
with frequent host/device data transfers), one actually cannot run as
big of a problem on Summit than one could fit on Cori. This makes
reducing the memory footprint of a simulation code quite impactful in
terms of enabling production-level science calculations.

Reducing the memory footprint can have performance implications
as well. Originally in WarpX, every particle stored persistent values
for the electric and magnetic fields interpolated to the particle’s po-
sition. In addition to the storage overhead, these values need to be
communicated every time particles change MPI domains, and shuffled
around in memory every time particles are sorted (see Section 3.4.2).

Additionally, if the performance of a GPU kernel is memory-bound,

Parallel Computing 108 (2021) 102833A. Myers et al.

t
s
a
a
g
o
p
w
C

o
p

3

t
m
f
L
t
t
s
s
i
w
k
c
t
o
b

t
o
A
w
t
o
c

m
‘
d
a

i
f
o
n
t
t
o
l

u
h

w
a

meaning that its performance is limited by the rate at which data can
be transferred from main memory to the streaming multiprocessors
on the GPUs, then increasing the arithmetic intensity of those kernels
by streaming less data and recomputing values on-the-fly can improve
their overall performance.

Recently, WarpX removed the persistent electric and magnetic fields
at the particle positions in favor of re-gathering these values inside GPU
kernels as they are needed. For this, the field gathering and particle
pushing kernels were fused together in the PIC loop, resulting in less
data that needed to be streamed to the processors in a given timestep.
In addition to reducing the memory footprint by a factor of ≈ 1.6,
his also led to a ≈ 25% percent speedup in the overall runtime on
everal key benchmarks. When the field values at the particle positions
re needed more than once in a step, as, for example, when modeling
dditional effects such as ionization or using certain diagnostics, the
ather operation is simply performed multiple times. This kind of
ptimization has the added benefit that it will likely improve CPU
erformance as well for computational kernels that are memory bound,
hich includes most of the operations performed in WarpX on modern
PU hardware.

Finally, we are currently exploring other means of reducing the
verall memory footprint of WarpX, including exploiting single/mixed
recision and employing compression.

.2. Memory arenas

Dynamic memory allocation is many times more expensive on GPU
han CPU architectures. This fact, combined with common program-
ing patterns involving temporary variables, can lead to drastic per-

ormance penalties on GPU systems. For example, consider the code in
isting 3. This snippet demonstrates how to loop over mesh data using
he AMReX data structures. The MFIter object instructs each MPI rank
o loop over the grids it owns. For each grid, we resize a temporary
cratch space called tmp, then launch a ParallelFor kernel to do
ome calculations using it. The Elixir is not essential to the point, but
t keeps the scratch space alive in memory until the kernel is finished
orking with it — this is needed due to the asynchronous nature of GPU
ernel launches. If every call to resize the buffer ended up triggering
udaMalloc and cudaFree calls, this could easily end up becoming

he dominant cost of this routine. Another place this comes up is in out-
f-place sorting and partitioning operations, which require a temporary
uffer in which to store the result.

One way to mitigate this is to refactor application codes to keep
emporary buffers alive in memory instead of letting them go out
f scope. However, this is error-prone and labor-intensive. Instead,
MReX provides a number of memory pool classes termed ‘‘Arenas’’,
hich allocate memory in large chunks and dole out pieces of it as

he application runs. Thus, even though WarpX makes frequent use
f temporary variables, during most time steps that are no calls to
udaMalloc or cudaFree.

These Arenas have a number of different options for managing
emory fragmentation; currently, the default in AMReX is to use a

‘first fit’’ strategy. AMReX provides memory arenas that use host,
evice, pinned, and managed memory. WarpX uses these Arenas for
ll of its mesh and particle data structures.

By default, when running on NVIDIA GPUs, WarpX places all of
ts core data in an Arena that uses managed memory. However, this
eature is optional, and we have tested the performance implications
f this compared to placing the data in the device Arena on the 1-
ode version of the test problem presented in Section 4.1.1. Overall,
he overhead associated with using unified memory appears to be less
han 0.2% on NVIDIA V100, likely because WarpX initializes all data
n the device and AMReX uses cudaMemAdvise to set the preferred
ocation of the managed memory Arena to ‘‘device’’.

In addition to the managed and device memory arenas, WarpX also
ses a pinned memory arena in a few places where frequent device-to-
4

ost transfers are needed: first, when performing MPI communication
hen GPU-aware is not available or is switched off (see Section 3.3),
nd second, when copying simulation data to host for IO.

1 #i f d e f AMREX_USE_OMP
2 #pragma omp p a r a l l e l i f (notInLaunchRegion ())
3 #endi f
4 {
5 FArrayBox tmp ;
6 f o r (MFIter mfi (mf , Ti l ingIfNotGPU ()) ;
7 mfi . i sVa l i d () ; ++mfi)
8 {
9 const Box& bx = mf . t i l e box () ;

10 tmp . r e s i z e (bx) ;
11 E l i x i r e l i = tmp . e l i x i r () ;
12 auto const& tmp_arr = tmp . array () ;
13

14 amrex : : P a r a l l e l F o r (bx ,
15 [=] AMREX_GPU_DEVICE (i n t i , i n t j , i n t k)
16 {
17 compute_tmp (i , j , k , tmp_arr) ;
18 }
19 }
20 }

Listing 3: Example of an MFIter loop with a ParallelFor inside.
This code can be compiled to run on CPUs with OpenMP or GPUs with
CUDA, HIP, or DPC++.

3.3. Communication optimization

Once the initial port of WarpX to NVIDIA GPUs was complete, the
initial experience was that compute kernels such as current deposition
and field gathering were much faster on V100 hardware than on KNL.
However, the same was not true for the AMReX parallel communication
routines. The primary reason for this was that the parallel communi-
cation routines involved many small, ‘‘copy on intersection’’ routines
between neighboring boxes, especially when packing and unpacking
MPI send and receive buffers. These operations involved little to no
computation but launched many small kernels that packed and un-
packed data buffers. Thus, the dominant cost in these routines was
the latency associated with the kernel launches, which could be fused
into a fewer number. After optimization, each MPI rank makes only 1
kernel launch to pack and unpack its MPI buffers, which led to greatly
improved performance on Summit.

Additionally, the parallel communication routines in AMReX were
restructured to take advantage of GPU-aware MPI implementations, in
which pointers to device memory can be passed directly to MPI function
calls without any need to explicitly transfer data to the host first. This
feature is optional; in the event that it is switched off, data in MPI
buffers is copied to pinned memory before it is passes to MPI. Note
that to date, we have not seen large performance benefit from using
GPUDirect on Summit.

3.4. Cache utilization

As with CPU-based many-core architectures, rearranging compu-
tations so that they properly exploit the memory hierarchy can lead
to significant performance increases on V100 GPUs. In this section,
we discuss a case-study in this effect — specifically, on how periodic
sorting of particle data, so that it is processed in a cache-friendly
way, can greatly improve the performance of PIC operations like field
gathering and current deposition on V100. First, however, we will
describe the current deposition algorithm we use, and how it differs

between CPU and GPU runs, in more detail.

Parallel Computing 108 (2021) 102833A. Myers et al.
3.4.1. Current deposition
In PIC codes, most operations are straightforward to parallelize,

since particles can be threaded over and processed independently with-
out needing to worry about potential race conditions. Charge and
current deposition operations, however, require special consideration,
since when threading over particles there is the potential for collisions
as multiple threads may attempt to update the same cell simultane-
ously. Note that, while most work loops in WarpX are performance
portable between CPU and GPU architectures in the manner of Listing
3, the current deposition step is the one area where it does maintain
two different code paths through the use of #ifdef preprocessor direc-
tives. This is because the current deposition is a particularly important
routine in terms of computational cost, and because fundamentally
different approaches need to be selected depending on whether we are
running with OpenMP or CUDA/HIP/DPC++ as the parallel backend,
for reasons discussed below.

In WarpX, our approach to concurrent scatter operations in particle
deposition kernels varies With OpenMP, the particles on a grid are
sorted onto smaller sub-regions called tiles. This sorting achieves two
things: first, it is good for data locality, because particles in the same
tile are likely to contribute to cells that are near each other in memory,
and second, because it allows OpenMP threads to be mapped to tiles,
which can then be processed simultaneously. Each OpenMP thread
deposits particles onto its own, private deposition buffer with enough
cells to capture the support of all the particles on the tile. There is no
need for atomics at this stage, since each thread has its own buffer.
After deposition onto the buffer is complete, the buffer values are
atomically added to the values for the full grid using atomic writes.
Thus atomics are only needed on a per-cell basis, not a per-particle
basis.

The above algorithm requires having few enough OpenMP threads
that each one can have its own private deposition buffer large enough
to cover the support of all the particles in a tile, a strategy sometimes
called data duplication. While this is possible when running on a few
(say, 8-32) OpenMP threads, it becomes infeasible on GPUs, which
can easily have tens of thousands of concurrently active threads. Thus,
when running on GPUs, we dispense with thread-private buffers and
perform atomic writes directly to global memory for each particle.
The performance of global atomics on V100 is quite good; however it
still beneficial to perform some sort of sub-box level sorting for the
particles on a grid to achieve better data locality. Unlike with the
OpenMP algorithm, this sorting process does not need to be done every
time step, since we only need an approximate ordering to significantly
improve cache re-use, not a strong guarantee that all the particles being
processed by an OpenMP thread are inside the thread’s buffer region.
WarpX has experimented with thread-block level buffers in GPU shared
memory to reduce the number of global atomic updates; however, none
of these methods have been faster than the one described above. This
details of particle sorting on GPUs are discussed in the next section.

3.4.2. Particle sorting
Periodic sorting of the particles on each grid by their spatial loca-

tions so that particles that are close to each in memory also interact
with cells that are close to each in memory exploits the memory
hierarchy on the GPUs more effectively than processing them in an
unordered fashion. This is particularly true in the case that particles
are moving with high velocities, such that they frequently change
cells. In that case, even if particles are sorted at a particular time,
they will rapidly become disordered, leading to significant performance
degradation in the particle–mesh operations.

Note that we differentiate between binning, which computes a
permutation array that assigns particle indices to cells with user-defined
bin size, and sorting, which uses this permutation array to actually
reorder the particle data in memory. Cache utilization requires full
sorting, but for many operations simply knowing the cell-sorted indices
is sufficient. AMReX provides a GPU-capable implementation of the
5

Fig. 1. The effect of sorting interval (i.e., sorting every 𝑁 time steps) and sort bin
size on the overall performance on a uniform plasma benchmark. The 𝑥-axis shows the
sort interval, while the 𝑦-axis shows the overall time to take 100 steps, including the
cost of the sorting. A sort interval > 100 means that the particles are never re-sorted
during the run.

Fig. 2. Roofline analysis of the 3rd-order Esirkepov current deposition [24] kernel
in WarpX on a single V100 GPU, with and without particle sorting. In the memory
streaming limit, three different lines are shown, corresponding to the bandwidths of
the L1 and L2 caches as well as that for the main high-bandwidth memory (HBM) on
the GPU. Likewise, in the compute-bound regime, two different values are used for
the peak floating point performance: both with and without taking advantage of fused
multiply–add instructions. The arithmetic intensity (A.I.) is measured three times for
each kernel, using the memory traffic for each level of the memory hierarchy. For the
sorted version, the fact the A.I. is significantly lower for the L1 and L2 data points
shows that we are getting substantial reuse in both levels of cache. Conversely, the fact
that the data points are all on top of each for the unsorted run indicates that without
sorting, the degree of reuse is poor.

Fig. 3. Same as Fig. 2, but for the fused gather and push kernel in WarpX. Again,
there is substantial cache reuse when sorting is employed, although for this kernel
performance still appears to be limited by HBM bandwidth, even with sorting.

Parallel Computing 108 (2021) 102833A. Myers et al.
counting sort operation that can be used to perform both of these
operations. Internally, it is built using a GPU implementation of parallel
prefix sum, which is based on Ref. [25] and works on NVIDIA, AMD,
and Intel GPUs.

In addition to the presented cache-utilization optimization, sorting
and/or binning particles is needed for the modeling of particle–particle
interactions. The PIC method by default only models particle–mesh
interaction and mesh updates. WarpX implements binary collisions,
which depend on a prior binning of neighboring particles, to address
various applications in accelerator and beam physics.

Fig. 1 shows the results of a parameter study in which the bin
size and sorting interval were varied. For example, a bin size of 2𝑥2𝑥2
and sorting interval of 4 means that particles were sorted into 2𝑥2𝑥2
supercells every 4 timesteps. On this problem, the optimal sorting is to
sort by cell (i.e. a bin size of 1𝑥1𝑥1 every time step, and the difference
between sorting optimally and not sorting at all is a factor of ≈7.5,
with most of the improvement comings from the current deposition
and fused gather and push kernels. However, the very frequent sorting
interval for this problem is a special, because the particles in this
problem change cell more often than in most WarpX applications.
Currently, the default in WarpX, used throughout Section 4, is to sort
the particles by their PIC cell every 4 time steps.

Note that, although the Redistribute() function in AMReX
does not maintain this cell-sorted order for particles that left one grid
and been migrated to another, this only applies to particles that have
changed grids — typically only a small subset of the total that are near
the ‘‘surface’’. The bulk of the particles on a grid will maintain their
sorted order in between Redistribute() calls.

Figs. 2 and 3 show the results of a roofline analysis [26] on the
current deposition and fused gather and push kernels in WarpX, which
are the two most computationally expensive operations. Our analysis
followed the methodology of [27]. For this test, we used a uniform
plasma setup with 8 particles per cell and gave the particles a large
thermal velocity, so that they frequently change cells. To rule out any
transient effects, we ran the problem for a total of 100 steps and only
profiled the last one.

The roofline analysis reveals three things. First, as already demon-
strated, sorting the particles gives significantly better performance on
V100 GPUs than not sorting them. Second, the fact that the arithmetic
intensity measured using the memory bandwidth for the L1 and L2
caches is significantly lower than for HBM indicates that, in the sorted
run, we are getting significant reuse in both of these levels of cache.
Third, the arithmetic intensity for the current deposition for the sorted
run is right up against the streaming limit for the L2 cache. This
indicates that the performance of this kernel is now limited by the L2
cache bandwidth. Gather and push, on the other hand, is likely still
limited by HBM bandwidth. Taken together, these results suggest that
these kernels should get significantly better performance on the A100,
which has a larger L2 cache and higher HBM bandwidth than the V100.

Finally, we note that some PIC codes, such as PIConGPU [15],
achieve a similar effect by explicitly using shared memory to cache the
electric and magnetic fields for nearby particles during field gathering,
and by using it as a write buffer when performing current deposition.
We have experimented with this approach and have thus far not seen
an advantage to doing so. However, work on this front is ongoing. We
note that our approach achieves a similar caching effect by implicitly
relying on L2 rather than explicitly managing the contents of shared
memory buffers.

4. Performance results

In this section, we give current performance results on Summit for
two key benchmark problems. We concentrate on two areas — the
scaling of the code on a uniform plasma test case and the performance
on a plasma accelerator benchmark problem.
6

Fig. 4. Results of a weak scaling study on a uniform plasma setup on Summit. The
𝑥-axis shows the number of Summit nodes, while the 𝑦-axis is the number of particles
advances per nanosecond. Both the CPU and GPU versions of the code scale well, and
the overall speedup associated with using the accelerators is ∼30.

4.1. Uniform plasma scaling

4.1.1. Weak scaling study
In order to test the scaling of WarpX in an idealized setting, as well

as to gauge the speedup associated with using accelerated nodes, we
have performed a weak scaling study using a uniform plasma setup
on OLCF’s Summit supercomputer. The base case for this scaling study
used a 256 x 256 x 384 domain with a box size of 1283 and ran
on 1 Summit node; thus, on the GPU-accelerated runs, each GPU was
responsible for processing two 1283-sized boxes. Particles were initially
distributed uniformly with 8 particles per cell. We used the standard
Yee FDTD solver for these runs, with Esirkepov current deposition and
third order shape functions. For the weak-scaling study, the number of
Summit nodes were doubled with the number of cells (and particles
therein) in the 𝑥-, 𝑦-, or 𝑧-directions, while holding everything else
constant, maintaining a constant workload per node. We continued
this process up to 2048 nodes — about half of the Summit machine.
Overhead associated with time spent in problem initialization, memory
allocation, etc., was minimized by running for a total of 100 steps.

The results are shown in Fig. 4. We performed the above scaling
study twice, once using all six GPUs per Summit node, and again
using only the POWER9 CPUs. All CPU and GPU results presented in
this section used versions of WarpX1 and AMReX2 from 10/2020, in
which all the optimizations discussed in Section 3 were present. For
both runs, we used 6 MPI tasks per node. For the GPU-accelerated
runs, we used one GPU per MPI task, and for the CPU-only case, we
used 7 OpenMP threads per task, so that all 42 physical cores on the
node were active. Note that, while the POWER9 CPUs on Summit are
capable of simultaneous multi-threading (SMT) - running more than 1
hardware thread per physical core — we do not typically see a large
benefit to using this feature with WarpX. To confirm this trend for
this problem setup, we have taken the 1 node version of the problem
above and also run it using 2 (SMT2) and 4 (SMT4) hardware threads
per physical core. The SMT2 run was approximately 2.4% faster than
without using SMT, while the SMT4 run was 13.9% slower. Thus,
while there is a small benefit to using SMT on this problem, using it

1 WarpX Version: 20.10-58-g7a3d26f1cc8d.
2 AMReX Version: 20.10-47-gf29a0c9d1b8e.

Parallel Computing 108 (2021) 102833A. Myers et al.
would not significantly alter our conclusions here. Likewise, we have
experimented with different combinations of MPI ranks per node and
OpenMP threads per rank other than 6–7 split shown in Fig. 4. Using
one MPI rank per socket rather than 3 and 21 OpenMP threads per
rank gives the same timings to within 0.2%, while other combinations,
such as 1 MPI and 42 OpenMP threads per node, were slower by a few
percentage points.

Using these results, we can characterize both the weak scaling
behavior of the CPU and GPU versions of the WarpX, as well as see
the overall speedup obtained on Summit from using the accelerators.
In both cases, the code scales well up to 2048 nodes. The weak scaling
efficiency, defined as the total time taken for 100 time steps on 1 node
divided by the total taken on 2048 nodes, is 81% for the GPU case
and 90% for the CPU case. The difference in scaling efficiency between
the CPU and GPU can be attributed to the fact that, because the
local work is significantly faster when using the V100s, communication
operations like FillBoundary, which are inherently harder to scale,
become relatively more expensive. Additionally, the speedup from the
accelerators at all scales tested was a factor of 30. This speedup
refers to the total run time, including time associated with host/device
memory traffic and communication, not to isolated compute kernels.

4.1.2. Strong scaling study
We have also conducted a series of strong scaling tests, using a very

similar uniform plasma problem setup as before. The only difference is
that the box size has been set to 643, to allow for more GPUs/MPI tasks
to be used as the problem is strong scaled. There is some overhead
associated with doing this, since with smaller boxes, the surface to
volume ratio of ghost cells is higher. Other than the box size, the
parameters are all the same as before.

We use a series of problem sizes, each scaled up a factor of 2 in
terms of the number of cells and particles in the domain. For each one,
we conduct a series of five runs, increasing the number of MPI tasks by
a factor of 2 each time. Thus, in the fifth run, the run time should have
decreased by a factor of 16, assuming perfect strong scaling. By the
time we have multiplied the number of MPI ranks by 16, this problem
has reached the point where the compute work and the communication
work take approximately the same amount of time, so we would not
expect the problem to scale further than that.

The smallest scaling study in this series goes from 1 to 16 nodes,
while the largest goes from 256 to 4096, nearly the entire machine.
The scaling efficiency, defined as the time a run should take assuming
perfect strong scaling within a problem size and perfect weak scaling
from the base problem size divided by the actual run time, is plotted
in Fig. 5. The efficiencies after strong scaling by a factor of 16 for each
problem size vary from approximately 70% for the smallest case to
approximately 50% for the largest.

4.2. Plasma acceleration stage

The above tests were highly idealized in several ways. First, the
workload was perfectly uniform at initial time, and approximately
uniform at later times, subject only to random fluctuations in the
particle density from cell to cell. Second, the number of particles
per cell, 8, is significantly higher than used in some WarpX physics
applications. Laser-wakefield acceleration runs, for example, tend to
use about 2 particles per cell on average, which can change the per-
formance profile of the code. Evaluating WarpX on this important
science scenario, the following setup was used, designed to mimic the
essential features of modeling a single plasma-accelerator stage from
WarpX’s challenge problem. This is also the benchmark problem used
to determine a Figure-of-Merit (FOM) for the ECP Key-Performance
Parameters (KPP) assessment. As a KPP-1 project, WarpX needs to
show at least a factor of 50 increase in its FOM over the baseline on
the eventual Exascale hardware. In this setup, an accelerated particle
beam is tracked using the moving window feature in WarpX, in which
7

Fig. 5. Strong scaling studies for a variety of problem sizes. Each tick type refers to a
different problem size. The 𝑥-axis shows the number of Summit nodes, and the 𝑦-axis
shows scaling efficiency, defined as the time a run should take assuming perfect strong
scaling within a problem size and perfect weak scaling from the base problem size,
divided by the actual run time.

the simulation domain itself shifts along with the beam at speed c.
Additionally, the entire simulation is modeled in a Lorentz-boosted
reference frame [10], using a gamma boost of 30. New plasma is con-
tinuously injected at the right-hand side of the domain, while particles
that leave the domain at the left-hand side are removed from the
simulation. The plasma consists of two particles per cell (one electron
and one proton), while the accelerated beam is comprised of electrons.
Mitigating the numerical Cherenkov instability in the modeling of a
relativistically flowing plasma, the Godrey filter [28] is applied to the
electromagnetic fields prior to gathering them to particle positions. For
the algorithmic options, we have used the Vay particle pusher [29],
the Cole–Karkkainen–Cowan FDTD solver [30], and energy-conserving
field gathering. We have again used Esirkepov current deposition with
3rd-order interpolation. To minimize the computer time needed to con-
duct these simulations, we initialize the problem to have the simulation
domain entirely filled with plasma, which would normally not be the
case when modeling an accelerator stage.

To gauge the impact of using accelerated nodes on this more realis-
tic problem setup, we have measured the FOM on Summit, defined as

FOM = num_cells ∗ (𝛼 + 𝛽 ∗ ppc)∕avg_time_per_it (1)

where num_cells is the total number of grid points in the simulation, 𝛼
is 0.1 as heuristic grid update cost, 𝛽 is 0.9 for particle update costs, ppc
is the average number of particles per cell, and avg_time_per_it is the
average time per iteration after 1000 steps. We performed this measure-
ment on 4263 Summit nodes, and extrapolated this number to the full
machine assuming perfect weak scaling. Our baseline FOM was mea-
sured on NERSC’s Cori using the original Warp code. The baseline FOM
value, measured in March 2019 on 6625 Cori nodes and extrapolated to
the 9668 on the full machine, was 2.2e10. The corresponding value on
Summit, measured in July 2020, was 2.5e12, over a factor of 100 im-
provement from the baseline. Additionally, the best CPU-only FOM ob-
tained using the WarpX code was 1.0e11, also measured in March 2019.
So there is a substantial (25x) improvement in our FOM measured with
WarpX from using the GPUs on Summit, as compared to Cori.

These values are all summarized in Table 1, along with several
other data points showing the evolution of WarpX’s FOM over time.
Of particular interest, the improvement from 9/19 to 1/20 was mostly
due to optimizations in the parallel communication routines in AMReX
(Section 3.3); from 1/20 to 2/20, the addition of the particle sorting
described in Section 3.4.2; from 2/20 to 6/20, the reduction in the size
of the particle data described in Section 3.1. Finally, the improvement
from 6/20 to 7/20 was solely due to being able to run a problem with
more cells per node. This illustrates the point made in Section 3.1,

Parallel Computing 108 (2021) 102833A. Myers et al.

o
a
e
m

W
c
o
k
t
o
i
b

d
w
o
a
t
c
a

Table 1
Progress in the FOM measurement over time. Code: either the original Warp code
(baseline) or WarpX. Date: the date when the measurement was taken. Machine: which
computer was used to make the measurement. 𝑁𝑐/Node: the problem size in number
f cells per node. Nodes: how many nodes the measurement was performed on; there
re 9668 KNL nodes on Cori and 4608 nodes on Summit. FOM: the figure of merit,
xtrapolated from the number of nodes the measurement was taken on to the full
achine.
Code Date Machine N𝑐/Node Nodes FOM

Warp 3/19 Cori 0.4e7 6625 2.2e10
WarpX 3/19 Cori 0.4e7 6625 1.0e11
WarpX 6/19 Summit 2.9e7 32 8.6e11
WarpX 6/19 Summit 2.8e7 1000 7.8e11
WarpX 9/19 Summit 2.3e7 2560 6.8e11
WarpX 1/20 Summit 2.3e7 2560 1.0e12
WarpX 2/20 Summit 2.5e7 4263 1.2e12
WarpX 6/20 Summit 2.0e7 4263 1.4e12
WarpX 7/20 Summit 2.0e8 4263 2.5e12

about the importance of reducing the memory footprint on Summit.
Both by reducing the size of the WarpX particle data and by reducing
overhead in AMReX’s Arenas, an overall larger problem was able to be
run on Summit, resulting in a more efficient use of the machine.

5. Conclusion

We have summarized the approach taken to porting WarpX, which
was originally designed for many-core CPU architectures, to take ad-
vantage of GPU-accelerated nodes. This approach is largely based on
the amrex::ParallelFor set of performance portability functions.

e have summarized several key lessons learned from the port, in-
luding the importance of managing memory allocation and the code’s
verall memory footprint, the importance of minimizing the effect of
ernel launch latency in MPI communication routines, and the impor-
ance of utilizing the cache hierarchy on V100 GPUs. The GPU port
f WarpX scales up to nearly all of Summit and currently sees good
mprovements in its KPP-1 figure of merit on Summit relative to its
aseline.

While the measurements of the GPU performance optimizations
iscussed in this paper were all based on the NVIDIA GPUs on Summit,
e expect that most of these (for example, refactoring code to reduce
verhead associated with kernel launch latency) will generalize to other
ccelerator architectures, such as AMD’s MI100, as well. Additionally,
he optimizations based on reducing memory footprint and exploiting
ache hierarchy should transfer to CPU architectures as well. Finally,
lthough the AMReX ParallelFor targets CUDA, HIP, and DPC++

as parallel backends, the optimizations discussed here are not specific
to those programming models and should transfer to other approaches
such as OpenACC and OpenMP.

Declaration of competing interest

No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict
with this work. For full disclosure statements refer to https://doi.org/
10.1016/j.parco.2021.102833.

Acknowledgments

This research was supported by the Exascale Computing Project (17-
SC-20-SC), a joint project of the U.S. Department of Energy’s Office
of Science and National Nuclear Security Administration, responsible
for delivering a capable exascale ecosystem, including software, ap-
plications, and hardware technology, to support the nation’s exascale
computing imperative. This work was performed in part under the
auspices of the U.S. Department of Energy by Lawrence Berkeley Na-
8

tional Laboratory under Contract DE-AC02-05CH11231, SLAC National
Accelerator Laboratory under contract AC02-76SF00515, and Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

This research used resources of the Oak Ridge Leadership Comput-
ing Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC05-00OR22725.

WarpX is developed as open source project and available under
https://github.com/ECP-WarpX/WarpX. Presented code versions cor-
respond to the monthly releases of the code between 3/2019 and
10/2020. The data that support the findings of this study are available
under DOI:10.5281/zenodo.4277941.

References

[1] J.L. Vay, A. Almgren, L. Amorim, J. Bell, L. Ge, K. Gott, D. Grote, M. Hogan,
A. Huebl, R. Jambunathan, R. Lehe, A. Myers, C. Ng, J. Park, M. Rowan, O.
Shapoval, M. Thévenet, W. Zhang, Y. Zhao, E. Zoni, Toward the modeling of
chains of plasma accelerator stages with WarpX, J. Phys. Conf. Ser. 1596 (2020)
012059, http://dx.doi.org/10.1088/1742-6596/1596/1/012059, URL: https://
github.com/ECP-WarpX/WarpX.

[2] Exascale Computing Project, Homepage. URL: https://www.exascaleproject.org.
[3] O. Shapoval, J.L. Vay, H. Vincenti, Two-step perfectly matched layer for

arbitrary-order pseudo-spectral analytical time-domain methods, Comput. Phys.
Comm. 235 (2019) 102–110, http://dx.doi.org/10.1016/j.cpc.2018.09.015.

[4] H. Vincenti, J.L. Vay, Detailed analysis of the effects of stencil spatial variations
with arbitrary high-order finite-difference maxwell solver, Comput. Phys. Comm.
200 (2016) 147–167, http://dx.doi.org/10.1016/j.cpc.2015.11.009.

[5] A. Nikishov, Pair production by a constant external field, Sov. Phys.—JETP 30
(1970) 660.

[6] A. Gonoskov, S. Bastrakov, E. Efimenko, A. Ilderton, M. Marklund, I. Meyerov,
A. Muraviev, A. Sergeev, I. Surmin, E. Wallin, Extended particle-in-cell schemes
for physics in ultrastrong laser fields: Review and developments, Phys. Rev. E
92 (2015) 023305, http://dx.doi.org/10.1103/PhysRevE.92.023305.

[7] P. Carneiro, T. Grismayer, R. Fonseca, L. Silva, Quantum electrodynamics vacuum
polarization solver, 2017, arXiv:1607.04224.

[8] F. Pérez, L. Gremillet, A. Decoster, M. Drouin, E. Lefebvre, Improved modeling
of relativistic collisions and collisional ionization in particle-in-cell codes, Phys.
Plasmas 19 (8) (2012) 083104, http://dx.doi.org/10.1063/1.4742167.

[9] A. Lifschitz, X. Davoine, E. Lefebvre, J. Faure, C. Rechatin, V. Malka, Particle-
in-Cell modelling of laser–plasma interaction using Fourier decomposition, J.
Comput. Phys. 228 (5) (2009) 1803–1814, http://dx.doi.org/10.1016/j.jcp.2008.
11.017.

[10] J.L. Vay, Noninvariance of space- and time-scale ranges under a Lorentz trans-
formation and the implications for the study of relativistic interactions, Phys.
Rev. Lett. 98 (13) (2007) 130405/1–4, http://dx.doi.org/10.1103/PhysRevLett.
98.130405.

[11] W. Zhang, A. Almgren, V. Beckner, J. Bell, J. Blaschke, C. Chan, M. Day,
B. Friesen, K. Gott, D. Graves, M.P. Katz, A. Myers, T. Nguyen, A. Nonaka,
M. Rosso, S. Williams, M. Zingale, AMReX: a framework for block-structured
adaptive mesh refinement, J. Open Source Softw. 4 (37) (2019) 1370, http:
//dx.doi.org/10.21105/joss.01370, URL: https://ccse.lbl.gov/AMReX.

[12] W. Zhang, A. Myers, K. Gott, A. Almgren, J. Bell, AMReX: Block-structured
adaptive mesh refinement for multiphysics applications, 2020, arXiv:2009.12009.

[13] H. Vincenti, M. Lobet, R. Lehe, R. Sasanka, J.L. Vay, An efficient and portable
SIMD algorithm for charge/current deposition in Particle-In-Cell codes, Comput.
Phys. Comm. 210 (2017) 145–154, http://dx.doi.org/10.1016/j.cpc.2016.08.023.

[14] H. Burau, R. Widera, W. Hönig, G. Juckeland, A. Debus, T. Kluge, U. Schramm,
T. Cowan, R. Sauerbrey, M. Bussmann, PIConGPU: A fully relativistic particle-in-
cell code for a GPU cluster, IEEE Trans. Plasma Sci. 38 (10) (2010) 2831–2839,
http://dx.doi.org/10.1109/TPS.2010.2064310.

[15] M. Bussmann, H. Burau, T. Cowan, A. Debus, A. Huebl, G. Juckeland, T.
Kluge, W. Nagel, R. Pausch, F. Schmitt, U. Schramm, J. Schuchart, R. Widera,
Radiative signatures of the relativistic Kelvin-Helmholtz instability, in: Pro-
ceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’13, ACM, New York, NY, USA, 2013,
pp. 5:1–5:12, http://dx.doi.org/10.1145/2503210.2504564, URL: https://github.
com/ComputationalRadiationPhysics/picongpu.

[16] I. Surmin, S. Bastrakov, Z. Matveev, E. Efimenko, A. Gonoskov, I. Meyerov, Co-
design of a particle-in-cell plasma simulation code for intel xeon phi: A first
look at knights landing, in: Algorithms and Architectures for Parallel Processing,
Springer International Publishing, Cham, 2016, pp. 319–329, http://dx.doi.org/
10.1007/978-3-319-49956-7_25.

[17] S.S. Vazhkudai, B.R. de Supinski, A.S. Bland, A. Geist, J. Sexton, J. Kahle,
C.J. Zimmer, S. Atchley, S. Oral, D.E. Maxwell, V.G.V. Larrea, A. Bertsch, R.
Goldstone, W. Joubert, C. Chambreau, D. Appelhans, R. Blackmore, B. Casses,
G. Chochia, G. Davison, M.A. Ezell, T. Gooding, E. Gonsiorowski, L. Grinberg,
B. Hanson, B. Hartner, I. Karlin, M.L. Leininger, D. Leverman, C. Marroquin, A.
Moody, M. Ohmacht, R. Pankajakshan, F. Pizzano, J.H. Rogers, B. Rosenburg, D.
Schmidt, M. Shankar, F. Wang, P. Watson, B. Walkup, L.D. Weems, J. Yin, The

https://doi.org/10.1016/j.parco.2021.102833
https://doi.org/10.1016/j.parco.2021.102833
https://doi.org/10.1016/j.parco.2021.102833
https://github.com/ECP-WarpX/WarpX
https://doi.org/10.5281/zenodo.4277941
http://dx.doi.org/10.1088/1742-6596/1596/1/012059
https://github.com/ECP-WarpX/WarpX
https://github.com/ECP-WarpX/WarpX
https://github.com/ECP-WarpX/WarpX
https://www.exascaleproject.org
http://dx.doi.org/10.1016/j.cpc.2018.09.015
http://dx.doi.org/10.1016/j.cpc.2015.11.009
http://refhub.elsevier.com/S0167-8191(21)00081-8/sb5
http://refhub.elsevier.com/S0167-8191(21)00081-8/sb5
http://refhub.elsevier.com/S0167-8191(21)00081-8/sb5
http://dx.doi.org/10.1103/PhysRevE.92.023305
http://arxiv.org/abs/1607.04224
http://dx.doi.org/10.1063/1.4742167
http://dx.doi.org/10.1016/j.jcp.2008.11.017
http://dx.doi.org/10.1016/j.jcp.2008.11.017
http://dx.doi.org/10.1016/j.jcp.2008.11.017
http://dx.doi.org/10.1103/PhysRevLett.98.130405
http://dx.doi.org/10.1103/PhysRevLett.98.130405
http://dx.doi.org/10.1103/PhysRevLett.98.130405
http://dx.doi.org/10.21105/joss.01370
http://dx.doi.org/10.21105/joss.01370
http://dx.doi.org/10.21105/joss.01370
https://ccse.lbl.gov/AMReX
http://arxiv.org/abs/2009.12009
http://dx.doi.org/10.1016/j.cpc.2016.08.023
http://dx.doi.org/10.1109/TPS.2010.2064310
http://dx.doi.org/10.1145/2503210.2504564
https://github.com/ComputationalRadiationPhysics/picongpu
https://github.com/ComputationalRadiationPhysics/picongpu
https://github.com/ComputationalRadiationPhysics/picongpu
http://dx.doi.org/10.1007/978-3-319-49956-7_25
http://dx.doi.org/10.1007/978-3-319-49956-7_25
http://dx.doi.org/10.1007/978-3-319-49956-7_25

Parallel Computing 108 (2021) 102833A. Myers et al.
design, deployment, and evaluation of the CORAL pre-exascale systems, in: SC18:
International Conference for High Performance Computing, Networking, Storage
and Analysis, 2018, pp. 661–672, http://dx.doi.org/10.1109/SC.2018.00055.

[18] CAMPA Collaboration, Particle-In-Cell Modeling Interface (PICMI). URL: https:
//github.com/picmi-standard/picmi.

[19] K. Yee, Numerical solution of initial boundary value problems involving
maxwell’s equations in isotropic media, IEEE Trans. Antennas and Propagation
14 (3) (1966) 302–307, http://dx.doi.org/10.1109/TAP.1966.1138693.

[20] H. Carter Edwards, C.R. Trott, D. Sunderland, Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns, J. Par-
allel Distrib. Comput. 74 (12) (2014) 3202–3216, http://dx.doi.org/10.1016/j.
jpdc.2014.07.003, Domain-Specific Languages and High-Level Frameworks for
High-Performance Computing.

[21] D.A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A.J. Kunen, O.
Pearce, P. Robinson, B.S. Ryujin, T.R. Scogland, RAJA: Portable performance for
large-scale scientific applications, in: 2019 IEEE/ACM International Workshop
on Performance, Portability and Productivity in HPC, P3HPC, 2019, pp. 71–81,
http://dx.doi.org/10.1109/P3HPC49587.2019.00012.

[22] NVIDIA Research, CUB documentation, 2020, https://nvlabs.github.io/cub/.
(Accessed 14 June 2020).

[23] Advanced Micro Devices, Inc., rocPRIM Github page, 2020, https://github.com/
ROCmSoftwarePlatform/rocPRIM. (Accessed 14 June 2020).
9

[24] T. Esirkepov, Exact charge conservation scheme for Particle-in-Cell simulation
with an arbitrary form-factor, Comput. Phys. Comm. 135 (2) (2001) 144–153,
http://dx.doi.org/10.1016/S0010-4655(00)00228-9.

[25] D. Merrill, M. Garland, Single-pass Parallel Prefix Scan with Decou-
pled Lookback, Technical Report NVR2016-001, NVIDIA Research, 2016,
URL: https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-
Parallel-Prefix/nvr-2016-002.pdf.

[26] S. Williams, A. Waterman, D. Patterson, Roofline: An insightful visual perfor-
mance model for multicore architectures, Commun. ACM 52 (4) (2009) 65–76,
http://dx.doi.org/10.1145/1498765.1498785.

[27] C. Yang, T. Kurth, S. Williams, Hierarchical roofline analysis for GPUs: Accel-
erating performance optimization for the NERSC-9 perlmutter system, Concurr.
Comput.: Pract. Exper. 32 (20) (2020) e5547, http://dx.doi.org/10.1002/cpe.
5547, e5547 cpe.5547.

[28] B. Godfrey, J.L. Vay, Suppressing the numerical Cherenkov instability in FDTD
PIC codes, J. Comput. Phys. 267 (2014) http://dx.doi.org/10.1016/j.jcp.2014.
02.022.

[29] J.L. Vay, Simulation of beams or plasmas crossing at relativistic velocity, Phys.
Plasmas 15 (5) (2008) 056701, http://dx.doi.org/10.1063/1.2837054.

[30] M. Karkkainen, E. Gjonaj, T. Lau, T. Weiland, Low-dispersionwake field cal-
culation tools, in: Proc. of International Computational Accelerator Physics
Conference, Chamonix, France, 2006, pp. 35–40.

http://dx.doi.org/10.1109/SC.2018.00055
https://github.com/picmi-standard/picmi
https://github.com/picmi-standard/picmi
https://github.com/picmi-standard/picmi
http://dx.doi.org/10.1109/TAP.1966.1138693
http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://dx.doi.org/10.1109/P3HPC49587.2019.00012
https://nvlabs.github.io/cub/
https://github.com/ROCmSoftwarePlatform/rocPRIM
https://github.com/ROCmSoftwarePlatform/rocPRIM
https://github.com/ROCmSoftwarePlatform/rocPRIM
http://dx.doi.org/10.1016/S0010-4655(00)00228-9
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1002/cpe.5547
http://dx.doi.org/10.1002/cpe.5547
http://dx.doi.org/10.1002/cpe.5547
http://dx.doi.org/10.1016/j.jcp.2014.02.022
http://dx.doi.org/10.1016/j.jcp.2014.02.022
http://dx.doi.org/10.1016/j.jcp.2014.02.022
http://dx.doi.org/10.1063/1.2837054

	Porting WarpX to GPU-accelerated platforms
	Introduction
	Parallelization
	Domain decomposition
	Mesh and particle data structures
	Hierarchical parallelism
	Parallel communication routines
	ParallelFor
	Reductions

	Lessons from summit
	Memory optimization
	Memory arenas
	Communication optimization
	Cache utilization
	Current deposition
	Particle sorting

	Performance results
	Uniform plasma scaling
	Weak scaling study
	Strong scaling study

	Plasma acceleration stage

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

